Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity

[1]  Robert Shapley,et al.  The Receptive Fields of Visual Neurons , 2000 .

[2]  I. Ohzawa,et al.  Neural mechanisms for encoding binocular disparity: receptive field position versus phase. , 1999, Journal of neurophysiology.

[3]  R. L. de Valois,et al.  Inputs to directionally selective simple cells in macaque striate cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[5]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[6]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[7]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[8]  S. Nishida,et al.  Contrast Sensitivity of the Motion System , 1996, Vision Research.

[9]  E. Callaway,et al.  Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex , 1996, Nature.

[10]  M. Conway Handbook of perception and cognition , 1996 .

[11]  I. Ohzawa,et al.  Encoding of binocular disparity by simple cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[12]  N. Drasdo,et al.  Parvocellular neurons limit motion acuity in human peripheral vision , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[14]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[15]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  L. Palmer,et al.  Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat , 1994, Visual Neuroscience.

[17]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[18]  Ee Sutter,et al.  A deterministic approach to nonlinear systems analysis , 1992 .

[19]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[20]  JH Maunsell,et al.  Does primate motion perception depend on the magnocellular pathway? , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[22]  J. Maunsell,et al.  Macaque vision after magnocellular lateral geniculate lesions , 1990, Visual Neuroscience.

[23]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[25]  D. Tolhurst,et al.  The effect of threshold on the relationship between the receptive-field profile and the spatial-frequency tuning cure in simple cells of the cat's striate cortex , 1989, Visual Neuroscience.

[26]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[27]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[29]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  L. Vaina Matters of Intelligence , 1987 .

[31]  John H. R. Maunsell,et al.  Physiological Evidence for Two Visual Subsystems , 1987 .

[32]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. L. de Valois,et al.  Relationship between spatial-frequency and orientation tuning of striate-cortex cells. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[35]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[36]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[37]  K. Nakayama,et al.  Detection and discrimination of sinusoidal grating displacements. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[38]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[39]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[40]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[41]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[42]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[43]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[44]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[45]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[46]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[47]  R. C. Emerson,et al.  Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. , 1977, Journal of neurophysiology.

[48]  R. Marrocco,et al.  Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. , 1976, Journal of neurophysiology.

[49]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[50]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[51]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[52]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[53]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[54]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[55]  Vision Research , 1961, Nature.

[56]  H. K. Hartline,et al.  THE RECEPTIVE FIELDS OF OPTIC NERVE FIBERS , 1940 .