Robust physics-based locomotion using low-dimensional planning

This paper presents a physics-based locomotion controller based on online planning. At each time-step, a planner optimizes locomotion over multiple phases of gait. Stance dynamics are modeled using a simplified Spring-Load Inverted (SLIP) model, while flight dynamics are modeled using projectile motion equations. Full-body control at each instant is optimized to match the instantaneous plan values, while also maintaining balance. Different types of gaits, including walking, running, and jumping, emerge automatically, as do transitions between different gaits. The controllers can traverse challenging terrain and withstand large external disturbances, while following high-level user commands at interactive rates.

[1]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[2]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[3]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[4]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[5]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[6]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[7]  D. Koditschek,et al.  Approximating the Stance Map of a 2-DOF Monoped Runner , 2000 .

[8]  Shuuji Kajita,et al.  Real-time 3D walking pattern generation for a biped robot with telescopic legs , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[10]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Masayuki Inaba,et al.  Motion Planning for Humanoid Robots , 2003, ISRR.

[12]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[13]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[14]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[15]  Sergey V. Drakunov,et al.  Capture Point: A Step toward Humanoid Push Recovery , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[16]  Manoj Srinivasan,et al.  Computer optimization of a minimal biped model discovers walking and running , 2006, Nature.

[17]  Jerry Pratt,et al.  Velocity-Based Stability Margins for Fast Bipedal Walking , 2006 .

[18]  S. Collins,et al.  The advantages of a rolling foot in human walking , 2006, Journal of Experimental Biology.

[19]  Joel Chestnutt,et al.  Navigation planning for legged robots , 2007 .

[20]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[21]  Jovan Popovic,et al.  Multiobjective control with frictional contacts , 2007, SCA '07.

[22]  Jerry E. Pratt,et al.  Learning Capture Points for humanoid push recovery , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[23]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[24]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[25]  Jovan Popovic,et al.  Simulation of Human Motion Data using Short‐Horizon Model‐Predictive Control , 2008, Comput. Graph. Forum.

[26]  Benjamin Kuipers,et al.  Trajectory generation for dynamic bipedal walking through qualitative model based manifold learning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[27]  Katsu Yamane,et al.  Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, SIGGRAPH 2009.

[29]  R. Alexander Optimum walking techniques for quadrupeds and bipeds , 2009 .

[30]  K. Wampler,et al.  Optimal gait and form for animal locomotion , 2009, SIGGRAPH 2009.

[31]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[32]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[33]  Tong-Yee Lee,et al.  Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, SIGGRAPH 2010.