Navigation Functions With Time-Varying Destination Manifolds in Star Worlds

This paper formally constructs navigation functions with time-varying destinations on star worlds. The construction is based on appropriate diffeomorphic transformations and extends an earlier sphere-world formulation. A new obstacle modeling method is also introduced, reducing analytical complexity and offering unified expressions of common classes of <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional obstacles. The method allows for dynamic target tracking and is validated through simulations and experiments.

[1]  Masaki Yamakita,et al.  An application of passive velocity field control to cooperative multiple 3-wheeled mobile robots , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[2]  Shuzhi Sam Ge,et al.  Dynamic Motion Planning for Mobile Robots Using Potential Field Method , 2002, Auton. Robots.

[3]  V. R. Jisha,et al.  Lyapunov based approach for target tracking control of a mobile robot , 2015, 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT).

[4]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[5]  Boumediene Belkhouche,et al.  Line of sight robot navigation toward a moving goal , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Herbert G. Tanner,et al.  Constrained decision-making for low-count radiation detection by mobile sensors , 2015, Auton. Robots.

[7]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[8]  K.J. Kyriakopoulos,et al.  Motion Planning of Piezoelectrically Driven Micro-Robots Via Navigation Functions , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[9]  Kostas J. Kyriakopoulos,et al.  A feedback-based multiagent navigation framework , 2006, Int. J. Syst. Sci..

[10]  Vijay Kumar,et al.  Maintaining visibility for leader-follower formations in obstacle environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[11]  Vijay Kumar,et al.  A potential field based approach to multi-robot manipulation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Atsushi Yamashita,et al.  Improved artificial potential field-based simultaneous forward search method for robot path planning in complex environment , 2015, 2015 IEEE/SICE International Symposium on System Integration (SII).

[13]  Dariusz Pazderski,et al.  Real-time obstacle avoidance using harmonic potential functions , 2011 .

[14]  Vijay Kumar,et al.  Cooperative Visibility Maintenance for Leader–Follower Formations in Obstacle Environments , 2014, IEEE Transactions on Robotics.

[15]  G. Constantine,et al.  A Multivariate Faa di Bruno Formula with Applications , 1996 .

[16]  Roland Siegwart,et al.  An Interpolated Dynamic Navigation Function , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Eyad A. Feilat,et al.  Dynamic motion planning for autonomous mobile robot using fuzzy potential field , 2009, 2009 6th International Symposium on Mechatronics and its Applications.

[18]  Kanny Krizzy D. Serrano,et al.  An improved collision avoidance scheme using Artificial Potential Field with fuzzy logic , 2016, 2016 IEEE Region 10 Conference (TENCON).

[19]  Mansour Jamzad,et al.  Adaptive motion planning with artificial potential fields using a prior path , 2015, 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM).

[20]  Ahmed Badawy Manipulator trajectory planning using artificial potential field , 2014, 2014 International Conference on Engineering and Technology (ICET).

[21]  Nirmal Baran Hui,et al.  Coordinated motion planning of multiple mobile robots using potential field method , 2010, 2010 International Conference on Industrial Electronics, Control and Robotics.

[22]  Manuel Fernandez Guasti,et al.  Analytic geometry of some rectilinear figures , 1992 .

[23]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[24]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[25]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[26]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[27]  Guoqiang Hu,et al.  Adaptive velocity field control of a wheeled mobile robot , 2005, Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05..

[28]  F. Janabi-Sharifi,et al.  Robot path planning by integrating the artificial potential field approach with simulated annealing , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[29]  Javier Moreno-Valenzuela,et al.  A robust velocity field control , 2002, IEEE Trans. Control. Syst. Technol..

[30]  Herbert G. Tanner,et al.  Hybrid Potential Field Based Control of Differential Drive Mobile Robots , 2012, J. Intell. Robotic Syst..

[31]  Tito L. M. Santos,et al.  A New Approach Based in Potential Fields with Obstacles Avoidance for Mobile Robots , 2016, 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR).

[32]  O. Saotome,et al.  Dynamic Swarm Formation with Potential Fields and A* Path Planning in 3D Environment , 2012, 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium.

[33]  Youmin Zhang,et al.  Decentralized leader-follower formation control with obstacle avoidance of multiple unicycle mobile robots , 2015, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE).

[34]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[35]  Kaspar Althoefer,et al.  Real-time planner for multi-segment continuum manipulator in dynamic environments , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[36]  Perry Y. Li,et al.  Passive velocity field control of mechanical manipulators , 1995, IEEE Trans. Robotics Autom..

[37]  Javier Moreno-Valenzuela,et al.  Hierarchical velocity field control for robot manipulators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[38]  Steven M. LaValle,et al.  Simple and Efficient Algorithms for Computing Smooth, Collision-free Feedback Laws Over Given Cell Decompositions , 2009, Int. J. Robotics Res..

[39]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[40]  Erion Plaku,et al.  Path Planning for Swarms by Combining Probabilistic Roadmaps and Potential Fields , 2013, TAROS.

[41]  Andrey V. Savkin,et al.  Real-time kinematic navigation of a mobile robot among moving obstacles with guaranteed global convergence , 2014, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[42]  Herbert G. Tanner,et al.  Dynamics-compatible potential fields using stochastic perturbations , 2015, 2015 23rd Mediterranean Conference on Control and Automation (MED).

[43]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[44]  Kimon P. Valavanis,et al.  Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic , 2001, IEEE Trans. Robotics Autom..

[45]  Mohammad A. Jaradat,et al.  Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field , 2012, Soft Comput..

[46]  Masahide Kaneko,et al.  Unified environment-adaptive control of accompanying robots using artificial potential field , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[47]  G. Lefranc,et al.  Mobile robot navigation using potential fields and LMA , 2016, 2016 IEEE International Conference on Automatica (ICA-ACCA).

[48]  Dimitra Panagou,et al.  Motion planning and collision avoidance using navigation vector fields , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[49]  Caili Li,et al.  Star-world navigation functions for convergence to a time-varying destination manifold , 2017 .

[50]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[51]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[52]  Jean-Jacques E. Slotine,et al.  Real-time path planning using harmonic potentials in dynamic environments , 1997, Proceedings of International Conference on Robotics and Automation.