Anticipatory action selection for human-robot table tennis

[1]  D. Levey Recognition , 2017, The Harps that Once....

[2]  De Xu,et al.  Adding Active Learning to LWR for Ping-Pong Playing Robot , 2013, IEEE Transactions on Control Systems Technology.

[3]  Bernhard Schölkopf,et al.  Probabilistic movement modeling for intention inference in human–robot interaction , 2013, Int. J. Robotics Res..

[4]  Illah R. Nourbakhsh,et al.  Planning for Human–Robot Interaction in Socially Situated Tasks , 2013, Int. J. Soc. Robotics.

[5]  Enlu Zhou,et al.  Optimal Stopping Under Partial Observation: Near-Value Iteration , 2013, IEEE Transactions on Automatic Control.

[6]  Kris K. Hauser,et al.  Recognition, prediction, and planning for assisted teleoperation of freeform tasks , 2012, Autonomous Robots.

[7]  Zhikun Wang,et al.  Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models , 2013 .

[8]  Emilio Frazzoli,et al.  Intention-Aware Motion Planning , 2013, WAFR.

[9]  Oliver Kroemer,et al.  Learning to select and generalize striking movements in robot table tennis , 2012, AAAI Fall Symposium: Robots Learning Interactively from Human Teachers.

[10]  Patrick Gallinari,et al.  Sequential approaches for learning datum-wise sparse representations , 2012, Machine Learning.

[11]  Jeffrey V. Nickerson,et al.  Anticipatory systems: philosophical, mathematical, and methodological foundations , 2012, Int. J. Gen. Syst..

[12]  Siddhartha S. Srinivasa,et al.  Formalizing Assistive Teleoperation , 2012, Robotics: Science and Systems.

[13]  Bernhard Schölkopf,et al.  Probabilistic Modeling of Human Movements for Intention Inference , 2012, Robotics: Science and Systems.

[14]  Wolfram Burgard,et al.  Feature-Based Prediction of Trajectories for Socially Compliant Navigation , 2012, Robotics: Science and Systems.

[15]  David Hsu,et al.  Monte Carlo Bayesian Reinforcement Learning , 2012, ICML.

[16]  Christoph H. Lampert,et al.  Learning anticipation policies for robot table tennis , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Albert N. Shiryaev,et al.  Optimal Stopping Rules , 1980, International Encyclopedia of Statistical Science.

[18]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[19]  Alessandro Saffiotti,et al.  Human-aware task planning: An application to mobile robots , 2010, TIST.

[20]  Jan Peters,et al.  A biomimetic approach to robot table tennis , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  De Xu,et al.  Control system design for a 5-DOF table tennis robot , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[22]  Michèle Sebag,et al.  Feature Selection as a One-Player Game , 2010, ICML.

[23]  Pascal Poupart,et al.  Bayesian Reinforcement Learning , 2010, Encyclopedia of Machine Learning.

[24]  David Hsu,et al.  Motion planning under uncertainty for robotic tasks with long time horizons , 2010, Int. J. Robotics Res..

[25]  Christian Laugier,et al.  Growing Hidden Markov Models: An Incremental Tool for Learning and Predicting Human and Vehicle Motion , 2009, Int. J. Robotics Res..

[26]  Siddhartha S. Srinivasa,et al.  Planning-based prediction for pedestrians , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Nathan R. Sturtevant,et al.  Learning when to stop thinking and do something! , 2009, ICML '09.

[28]  Marion Alexander,et al.  TABLE TENNIS: A BRIEF OVERVIEW OF BIOMECHANICAL ASPECTS OF THE GAME FOR COACHES AND PLAYERS , 2009 .

[29]  Andrew S. Whitford,et al.  Cortical control of a prosthetic arm for self-feeding , 2008, Nature.

[30]  Guillaume Morel,et al.  How can human motion prediction increase transparency? , 2008, 2008 IEEE International Conference on Robotics and Automation.

[31]  Stefan Schaal,et al.  Natural Actor-Critic , 2003, Neurocomputing.

[32]  Christian Laugier,et al.  Intentional motion on-line learning and prediction , 2008, Machine Vision and Applications.

[33]  Cynthia Breazeal,et al.  Cost-Based Anticipatory Action Selection for Human–Robot Fluency , 2007, IEEE Transactions on Robotics.

[34]  Rachid Alami,et al.  A Human Aware Mobile Robot Motion Planner , 2007, IEEE Transactions on Robotics.

[35]  Eric A. Hansen,et al.  Indefinite-Horizon POMDPs with Action-Based Termination , 2007, AAAI.

[36]  Kurt Helmes,et al.  A Variational Inequality Sufficient Condition for Optimal Stopping with Application to an Optimal Stock Selling Problem , 2006, SIAM J. Control. Optim..

[37]  H. Bekkering,et al.  Joint action: bodies and minds moving together , 2006, Trends in Cognitive Sciences.

[38]  Fumio Miyazaki,et al.  Learning to Dynamically Manipulate: A Table Tennis Robot Controls a Ball and Rallies with a Human Being , 2006 .

[39]  Fumio Miyazaki,et al.  A learning approach to robotic table tennis , 2005, IEEE Transactions on Robotics.

[40]  Jesse Hoey,et al.  A Decision-Theoretic Approach to Task Assistance for Persons with Dementia , 2005, IJCAI.

[41]  L. Angel,et al.  RoboTenis: design, dynamic modeling and preliminary control , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[42]  Stéphane Villeneuve,et al.  Investment Timing Under Incomplete Information , 2003, Math. Oper. Res..

[43]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[44]  Juan A. Méndez,et al.  Ping-pong player prototype , 2003, IEEE Robotics Autom. Mag..

[45]  Michail G. Lagoudakis,et al.  Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..

[46]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[47]  Eric A. Hansen,et al.  Synthesis of Hierarchical Finite-State Controllers for POMDPs , 2003, ICAPS.

[48]  Joelle Pineau,et al.  Towards robotic assistants in nursing homes: Challenges and results , 2003, Robotics Auton. Syst..

[49]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[50]  Jacques Theureau,et al.  Activity organization and knowledge construction during competitive interaction in table tennis , 2002, Cognitive Systems Research.

[51]  Sebastian Thrun,et al.  Monte Carlo POMDPs , 1999, NIPS.

[52]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[53]  Alex Pentland,et al.  Modeling and Prediction of Human Behavior , 1999, Neural Computation.

[54]  Guang-Hui Hsu,et al.  Optimal Stopping by Means of Point Process Observations with Applications in Reliability , 1993, Math. Oper. Res..

[55]  John T. Wen,et al.  A robot ping pong player: optimized mechanics, high performance 3D vision, and intelligent sensor control , 1990, Robotersysteme.

[56]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[57]  G. Mazziotto Approximations of the optimal stopping problem in partial observation , 1986, Journal of Applied Probability.

[58]  Robert Rosen,et al.  Anticipatory systems : philosophical, mathematical, and methodological foundations , 1985 .

[59]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .