Sold!: auction methods for multirobot coordination

The key to utilizing the potential of multirobot systems is cooperation. How can we achieve cooperation in systems composed of failure-prone autonomous robots operating in noisy, dynamic environments? We present a method of dynamic task allocation for groups of such robots. We implemented and tested an auction-based task allocation system which we call MURDOCH, built upon a principled, resource centric, publish/subscribe communication model. A variant of the Contract Net Protocol, MURDOCH produces a distributed approximation to a global optimum of resource usage. We validated MURDOCH in two very different domains: a tightly coupled multirobot physical manipulation task and a loosely coupled multirobot experiment in long-term autonomy. The primary contribution of the paper is to show empirically that distributed negotiation mechanisms such as MURDOCH are viable and effective for coordinating physical multirobot systems.

[1]  Katia P. Sycara,et al.  Distributed Intelligent Agents , 1996, IEEE Expert.

[2]  Randall Davis,et al.  Negotiation as a Metaphor for Distributed Problem Solving , 1988, Artif. Intell..

[3]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[4]  Douglas B. Moran,et al.  The Open Agent Architecture: A Framework for Building Distributed Software Systems , 1999, Appl. Artif. Intell..

[5]  Maja J. Mataric,et al.  Behaviour-based control: examples from navigation, learning, and group behaviour , 1997, J. Exp. Theor. Artif. Intell..

[6]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[7]  Anthony Stentz,et al.  A Free Market Architecture for Distributed Control of a Multirobot System , 2000 .

[8]  Steven McCanne,et al.  Scalable Multimedia Communication with Internet Multicast, Light-weight Sessions, and the MBone , 1998 .

[9]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[10]  Carlos Ramos,et al.  A holonic approach for task scheduling in manufacturing systems , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Gaurav S. Sukhatme,et al.  Most valuable player: a robot device server for distributed control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[12]  Gaurav S. Sukhatme,et al.  Distributed multi-robot task allocation for emergency handling , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[13]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[14]  Maja J. Mataric,et al.  Broadcast of Local Elibility for Multi-Target Observation , 2000, DARS.

[15]  Marcos K. Aguilera,et al.  Matching events in a content-based subscription system , 1999, PODC '99.

[16]  Maja J. Mataric,et al.  Principled Communication for Dynamic Multi-robot Task Allocation , 2000, ISER.

[17]  Guy Theraulaz,et al.  Swarm made architectures , 1992 .

[18]  Tucker R. Balch,et al.  Behavior-based control of a non-holonomic robot in pushing tasks , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  Pattie Maes,et al.  Challenger: a multi-agent system for distributed resource allocation , 1997, AGENTS '97.

[20]  Dennis Shasha,et al.  Efficient Matching for Web-Based Publish/Subscribe Systems , 2000, CoopIS.

[21]  Miron Livny,et al.  Condor-a hunter of idle workstations , 1988, [1988] Proceedings. The 8th International Conference on Distributed.

[22]  Maja J. Matari,et al.  Behavior-based Control: Examples from Navigation, Learning, and Group Behavior , 1997 .

[23]  Martial Hebert,et al.  Distributed robotic mapping of extreme environments , 2001, SPIE Optics East.

[24]  B. Donald,et al.  Information Invariants for Distributed Manipulation 1 , 1995 .

[25]  R. McAfee,et al.  Auctions and Bidding , 1986 .

[26]  Fabrice R. Noreils,et al.  Toward a Robot Architecture Integrating Cooperation between Mobile Robots: Application to Indoor Environment , 1993, Int. J. Robotics Res..

[27]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[28]  Maja J. Mataric,et al.  Pusher-watcher: an approach to fault-tolerant tightly-coupled robot coordination , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[29]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[30]  M. Golfarelli,et al.  A Task-Swap Negotiation Protocol Based on the Contract Net Paradigm , 2000 .

[31]  David D. Clark,et al.  The design philosophy of the DARPA internet protocols , 1988, SIGCOMM '88.

[32]  Tuomas Sandholm,et al.  An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations , 1993, AAAI.

[33]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[34]  James A. Hendler,et al.  UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning , 1994, AIPS.

[35]  M. Buss,et al.  Self Organizing Robots Based on Cell Structures - CKBOT , 2002, IEEE International Workshop on Intelligent Robots.

[36]  Claus Ronald. Kube,et al.  Collective robotic intelligence , 1992 .

[37]  Lynne E. Parker,et al.  Case study for life-long learning and adaptation in coopertive robot teams , 1999, Optics East.

[38]  Hong Zhang,et al.  The use of perceptual cues in multi-robot box-pushing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.