Path planning in multi-scale ocean flows: Coordination and dynamic obstacles

Abstract As the concurrent use of multiple autonomous vehicles in ocean missions grows, systematic control for their coordinated operation is becoming a necessity. Many ocean vehicles, especially those used in longer-range missions, possess limited operating speeds and are thus sensitive to ocean currents. Yet, the effect of currents on their trajectories is ignored by many coordination techniques. To address this issue, we first derive a rigorous level-set methodology for distance-based coordination of vehicles operating in minimum time within strong and dynamic ocean currents. The new methodology integrates ocean modeling, time-optimal level-sets and optimization schemes to predict the ocean currents, the short-term reachability sets, and the optimal headings for the desired coordination. Schemes are developed for dynamic formation control, where multiple vehicles achieve and maintain a given geometric pattern as they carry out their missions. To do so, a new score function that is suitable for regular polygon formations is obtained. Secondly, we obtain an efficient, non-intrusive technique for level-set-based time-optimal path planning in the presence of moving obstacles. The results are time-optimal path forecasts that rigorously avoid moving obstacles and sustain the desired coordination. They are exemplified and investigated for a variety of simulated ocean flows. A wind-driven double-gyre flow is used to study time-optimal dynamic formation control. Currents exiting an idealized strait or estuary are employed to explore dynamic obstacle avoidance. Finally, results are analyzed for the complex geometry and multi-scale ocean flows of the Philippine Archipelago.

[1]  Pierre F. J. Lermusiaux,et al.  Optimizing velocities and transports for complex coastal regions and archipelagos , 2015 .

[2]  Pierre F. J. Lermusiaux,et al.  Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..

[3]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[4]  Pierre F. J. Lermusiaux,et al.  Path planning in time dependent flow fields using level set methods , 2012, 2012 IEEE International Conference on Robotics and Automation.

[5]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[6]  F. Durst,et al.  Asymmetric flows and instabilities in symmetric ducts with sudden expansions , 1978, Journal of Fluid Mechanics.

[7]  Franz S. Hover,et al.  Oceanographic pursuit: Networked control of multiple vehicles tracking dynamic ocean features , 2014 .

[8]  P. J. Haley,et al.  Time-evolving acoustic propagation modeling in a complex ocean environment , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[9]  Pierre F. J. Lermusiaux,et al.  Inverse barotropic tidal estimation for regional ocean applications , 2008 .

[10]  M. Ani Hsieh,et al.  Robotic Tracking of Coherent Structures in Flows , 2014, IEEE Transactions on Robotics.

[11]  Daisuke Kurabayashi,et al.  Implementation of Formation Transition System Using Synchronization in a Mobile Robot Group , 2007, FSR.

[12]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[13]  M. Ghil,et al.  Bifurcation analysis of ocean, atmosphere and climate models , 2009 .

[14]  Pierre F. J. Lermusiaux,et al.  Time-optimal path planning in dynamic flows using level set equations: realistic applications , 2014, Ocean Dynamics.

[15]  Pierre F. J. Lermusiaux,et al.  Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006 , 2011 .

[16]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[17]  Gaurav S. Sukhatme,et al.  Persistent ocean monitoring with underwater gliders: Adapting sampling resolution , 2011, J. Field Robotics.

[18]  Pierre FJ Lermusiaux,et al.  Time-optimal path planning in dynamic flows using level set equations: theory and schemes , 2014, Ocean Dynamics.

[19]  Janet Sprintall,et al.  Regional Oceanography of the Philippine Archipelago , 2011 .

[20]  Eric Brown-Dymkoski,et al.  A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows , 2014, J. Comput. Phys..

[21]  Pierre F. J. Lermusiaux,et al.  Multiscale Physical and Biological Dynamics in the Philippines Archipelago: Predictions and Processes , 2011 .

[22]  Vijay Kumar,et al.  Cooperative Control of Robot Formations , 2002 .

[23]  Fumin Zhang,et al.  Geometric formation control for autonomous underwater vehicles , 2010, 2010 IEEE International Conference on Robotics and Automation.

[24]  O. Midtgaard,et al.  Making AUVs Truly Autonomous , 2007, OCEANS 2007.

[25]  Pierre F. J. Lermusiaux,et al.  Lagoon of Venice ecosystem: Seasonal dynamics and environmental guidance with uncertainty analyses and error subspace data assimilation , 2009 .

[26]  Vijay Kumar,et al.  Swarm Coordination Based on Smoothed Particle Hydrodynamics Technique , 2013, IEEE Transactions on Robotics.

[27]  Ding Wang,et al.  Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment , 2009 .

[28]  George H. Born,et al.  Operational Altimeter Data Processing for Mesoscale Monitoring , 2002 .

[29]  Domenico Prattichizzo,et al.  A Geometric Characterization of Leader-Follower Formation Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Dong Sun,et al.  Coordinated Motion Planning for Multiple Mobile Robots Along Designed Paths With Formation Requirement , 2011, IEEE/ASME Transactions on Mechatronics.

[31]  Deepak N. Subramani,et al.  A Stochastic Optimization Method for Energy-Based Path Planning , 2014, DyDESS.

[32]  Pierre F. J. Lermusiaux,et al.  Verification and training of real-time forecasting of multi-scale ocean dynamics for maritime rapid environmental assessment , 2008 .

[33]  John J. Leonard,et al.  Cooperative Localization for Autonomous Underwater Vehicles , 2009, Int. J. Robotics Res..

[34]  Naomi Ehrich Leonard,et al.  Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay , 2009 .

[35]  Vijay Kumar,et al.  Controlling Swarms of Robots Using Interpolated Implicit Functions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  A. Robinson,et al.  The California Current System: A multiscale overview and the development of a feature-oriented regional modeling system (FORMS) , 2011 .

[37]  Dongbing Gu,et al.  A Fuzzy Leader-Follower Approach to Formation Control of Multiple Mobile Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[39]  Henk A. Dijkstra,et al.  Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams , 1997 .

[40]  Pierre F. J. Lermusiaux,et al.  Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment , 2009 .

[41]  M. Ani Hsieh,et al.  Distributed allocation of mobile sensing swarms in gyre flows , 2013, 1303.0704.

[42]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[43]  James G Bellingham,et al.  Robotics in Remote and Hostile Environments , 2007, Science.

[44]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[45]  Junku Yuh,et al.  Design and Control of Autonomous Underwater Robots: A Survey , 2000, Auton. Robots.

[46]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[47]  Pierre F. J. Lermusiaux,et al.  Adaptive modeling, adaptive data assimilation and adaptive sampling , 2007 .

[48]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[49]  Konuralp Yiğit,et al.  Path Planning Methods for Autonomous Underwater Vehicles , 2011 .

[50]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[51]  Bruno Jouvencel,et al.  Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection , 2010 .

[52]  B. Roth Rigid and Flexible Frameworks , 1981 .

[53]  Wei Ren,et al.  Distributed coordination architecture for multi-robot formation control , 2008, Robotics Auton. Syst..

[54]  Steve Chien,et al.  Automated Sensor Network to Advance Ocean Science , 2010 .

[55]  David M. Fratantoni,et al.  Multi-AUV Control and Adaptive Sampling in Monterey Bay , 2006, IEEE Journal of Oceanic Engineering.

[56]  Henrik Schmidt,et al.  Real-time frontal mapping with AUVs in a coastal environment , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[57]  F. Durst,et al.  Low Reynolds number flow over a plane symmetric sudden expansion , 1974, Journal of Fluid Mechanics.

[58]  Naomi Ehrich Leonard,et al.  Control of coordinated patterns for ocean sampling , 2007, Int. J. Control.

[59]  Naomi Ehrich Leonard,et al.  Cooperative Control for Ocean Sampling: The Glider Coordinated Control System , 2008, IEEE Transactions on Control Systems Technology.

[60]  Howie Choset,et al.  M*: A complete multirobot path planning algorithm with performance bounds , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[62]  Pierre F. J. Lermusiaux,et al.  Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles , 2016 .

[63]  Arpit Agarwal,et al.  Statistical Field Estimation for Complex Coastal Regions and Archipelagos , 2011 .

[64]  Mustafa Unel,et al.  Formation Control of Multiple Robots Using Parametric and Implicit Representations , 2008, ICIC.

[65]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[66]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[67]  Jaydev P. Desai,et al.  A Graph Theoretic Approach for Modeling Mobile Robot Team Formations , 2002, J. Field Robotics.

[68]  Pierre F. J. Lermusiaux,et al.  Multiscale two-way embedding schemes for free-surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimilation System” , 2010 .

[69]  R. Murray,et al.  Graph rigidity and distributed formation stabilization of multi-vehicle systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[70]  Joaquín Tintoré,et al.  A forecast experiment in the Balearic Sea , 2008 .

[71]  Naomi Ehrich Leonard,et al.  Coordinated patterns of unit speed particles on a closed curve , 2007, Syst. Control. Lett..

[72]  W. G. Leslie,et al.  Spatial and Temporal Variations in Acoustic propagation during the PLUSNet'07 Exercise in Dabob Bay , 2008 .

[73]  Osamu Mochida,et al.  Prospects for the 21st Century , 1998 .

[74]  James G. Bellingham,et al.  Progress toward autonomous ocean sampling networks , 2009 .

[75]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[76]  T. Mullin,et al.  Nonlinear flow phenomena in a symmetric sudden expansion , 1990, Journal of Fluid Mechanics.

[77]  Han-Lim Choi,et al.  Continuous trajectory planning of mobile sensors for informative forecasting , 2010, Autom..

[78]  John R. Spletzer,et al.  Convex Optimization Strategies for Coordinating Large-Scale Robot Formations , 2007, IEEE Transactions on Robotics.

[79]  Pierre F. J. Lermusiaux,et al.  Coupled physical and biogeochemical data-driven simulations of Massachusetts Bay in late summer: real-time and postcruise data assimilation , 2003 .

[80]  Boumediene Belkhouche,et al.  Robot Formation Modelling and Control Based on the Relative Kinematics Equations , 2009, Int. J. Robotics Autom..

[81]  T. Qu,et al.  The Bifurcation of the North Equatorial Current in the Pacific , 2003 .

[82]  Pierre F. J. Lermusiaux,et al.  Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome , 2011 .

[83]  Franz S. Hover,et al.  Tracking ocean fronts with multiple vehicles and mixed communication losses , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  Randal W. Beard,et al.  Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach , 2004 .

[85]  Dimos V. Dimarogonas,et al.  Leader-follower cooperative attitude control of multiple rigid bodies , 2008, ACC.

[86]  B. Roth Rigid and Flexible Frameworks , 1981 .

[87]  Lorenzo Sabattini,et al.  Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation , 2011, Auton. Robots.

[88]  Ronald C. Arkin,et al.  Cooperative multiagent robotic systems , 1998 .

[89]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[90]  Robert A. Arnone,et al.  Circulation in the Philippine Archipelago Simulated by 1/12° and 1/25° Global HYCOM and EAS NCOM , 2011 .

[91]  Craig M. Lee,et al.  Transport estimates of the Western Branch of the Norwegian Atlantic Current from glider surveys , 2013 .

[92]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[93]  Pierre F. J. Lermusiaux,et al.  Quantifying Uncertainties in Ocean Predictions , 2006 .

[94]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..