A passivity based admittance control for stabilizing the compliant humanoid COMAN

This paper presents a generic stabilization framework which is applicable for both compliant and stiff humanoids. The proposed control framework is applied to the passive compliant humanoid robot COMAN which is equipped with series elastic actuators. The stabilization control framework combines the compliance control and the intrinsic angular momentum modulation to achieve an agile and compliant interaction against external perturbations. The admittance based compliance control uses the force/torque sensing in both feet to regulate the active compliance for the position controlled system. The physical elasticity in the new full body COMAN is exploited for the reduction and absorption of the instantaneous impacts while the admittance control further dissipates the excessive elastic energy. The angular momentum controller reduces the overall inertia effect for providing more rapid reactions. Both the theoretical work and experimental validation were presented. The effectiveness of the control scheme is demonstrated by COMAN's capabilities of withstanding various types of perturbations applied over the body, balancing on a moving platform and stabilizing while walking. Experimental data of the ground reaction force/torque, center of mass references and estimations, and the stored elastic energy are presented and analyzed.

[1]  Kenichi Narioka,et al.  Development of whole-body humanoid “pneumat-BS” with pneumatic musculoskeletal system , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Gordon Cheng,et al.  Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.

[3]  Christopher G. Atkeson,et al.  Dynamic Balance Force Control for compliant humanoid robots , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Yoshihiko Nakamura,et al.  Whole-body Cooperative Balancing of Humanoid Robot using COG Jacobian , 2002 .

[5]  Nikolaos G. Tsagarakis,et al.  The design of the lower body of the compliant humanoid robot “cCub” , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Gordon Cheng,et al.  Gravity Compensation and Full-Body Balancing for Humanoid Robots , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[7]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[8]  Alin Albu-Schäffer,et al.  Development of a biped robot with torque controlled joints , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[9]  Gerd Hirzinger,et al.  Posture and balance control for biped robots based on contact force optimization , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[10]  Carlos Balaguer,et al.  A practical decoupled stabilizer for joint-position controlled humanoid robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Nikolaos G. Tsagarakis,et al.  Stabilization for the compliant humanoid robot COMAN exploiting intrinsic and controlled compliance , 2012, 2012 IEEE International Conference on Robotics and Automation.

[12]  Nikolaos G. Tsagarakis,et al.  Walking trajectory generation for humanoid robots with compliant joints: Experimentation with COMAN humanoid , 2012, 2012 IEEE International Conference on Robotics and Automation.

[13]  Christian Ott,et al.  Unified Impedance and Admittance Control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[14]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[15]  Kazuhito Yokoi,et al.  Biped walking stabilization based on linear inverted pendulum tracking , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.