On the Origin of the Functional Architecture of the Cortex

The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex.

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  D. Hubel,et al.  RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. , 1963, Journal of neurophysiology.

[5]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[6]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[7]  M. Stryker,et al.  Quantitative study of cortical orientation selectivity in visually inexperienced kitten. , 1976, Journal of neurophysiology.

[8]  J. Pettigrew,et al.  Development of single-neuron responses in kitten's lateral geniculate nucleus. , 1978, Journal of neurophysiology.

[9]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.

[10]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[11]  H. Ikeda,et al.  The development of spatial resolving power of LGN cells and its susceptibility to blur and strabismus. , 1978, Archives italiennes de biologie.

[12]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[13]  A. Cowey Cortical Maps and Visual Perception the Grindley Memorial Lecture* , 1979, The Quarterly journal of experimental psychology.

[14]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[17]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[18]  Barbara Sakitt,et al.  Why the cortical magnification factor in rhesus can not be isotropic , 1982, Vision Research.

[19]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[20]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Y. Frégnac,et al.  Development of neuronal selectivity in primary visual cortex of cat. , 1984, Physiological reviews.

[22]  K. Albus,et al.  Early post‐natal development of neuronal function in the kitten's visual cortex: a laminar analysis. , 1984, The Journal of physiology.

[23]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[24]  A. L. Humphrey,et al.  Termination patterns of individual X‐ and Y‐cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18 , 1985, The Journal of comparative neurology.

[25]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[26]  A. Leventhal,et al.  Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially , 1986, Brain Research.

[27]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[28]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[29]  J D Schall,et al.  Relationships between ganglion cell dendritic structure and retinal topography in the cat , 1987, The Journal of comparative neurology.

[30]  R. Soodak The retinal ganglion cell mosaic defines orientation columns in striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Schneider,et al.  Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster , 1988, The Journal of comparative neurology.

[32]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[33]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[34]  N. Swindale Is the cerebral cortex modular? , 1990, Trends in Neurosciences.

[35]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[36]  R. Soodak Reverse-Hebb plasticity leads to optimization and association in a simulated visual cortex , 1991, Visual Neuroscience.

[37]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[38]  R. C. Van Sluyters,et al.  A computational model for the overall pattern of ocular dominance , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  K. Miller Development of orientation columns via competition between ON- and OFF-center inputs. , 1992, Neuroreport.

[40]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[41]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  D. Purves,et al.  Iterated patterns of brain circuitry (or how the cortex gets its spots) , 1992, Trends in Neurosciences.

[44]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  C. Shatz,et al.  Transient period of correlated bursting activity during development of the mammalian retina , 1993, Neuron.

[46]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[47]  Florentin Wörgötter,et al.  Design Principles of Columnar Organization in Visual Cortex , 1994, Neural Computation.

[48]  K D Miller,et al.  Models of activity-dependent neural development. , 1992, Progress in brain research.

[49]  Carla J. Shatz,et al.  Role for spontaneous neural activity in the patterning of connections between retina and LGN during visual system development , 1994, International Journal of Developmental Neuroscience.

[50]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[51]  David J. Willshaw,et al.  Elastic Net Model of Ocular Dominance: Overall Stripe Pattern and Monocular Deprivation , 1994, Neural Computation.

[52]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  K. Obermayer,et al.  Neural pattern formation via a competitive Hebbian mechanism , 1995, Behavioural Brain Research.

[54]  R. Yuste,et al.  Neuronal domains in developing neocortex: Mechanisms of coactivation , 1995, Neuron.

[55]  R C Van Sluyters,et al.  Cytochrome-oxidase blobs in cat primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[57]  K. Pawelzik,et al.  Organization of the visual cortex , 1996, Nature.

[58]  I. Ohzawa,et al.  Encoding of binocular disparity by simple cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[59]  C. Shatz Emergence of order in visual system development , 1996, Journal of Physiology-Paris.

[60]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[61]  M. Stryker,et al.  The Role of Activity in the Development of Long-Range Horizontal Connections in Area 17 of the Ferret , 1996, The Journal of Neuroscience.

[62]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[63]  Distribution and coverage of beta cells in the cat retina. , 1996, The Journal of comparative neurology.

[64]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[65]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[66]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[67]  A. Grinvald,et al.  Spatio–temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex , 1997, Nature.

[68]  M. Sur,et al.  Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets , 1997, The Journal of comparative neurology.

[69]  M. Stryker,et al.  Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. , 1997, Journal of neurophysiology.

[70]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[71]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[72]  Federico Morán,et al.  Receptive Field Map Development by Anti-Hebbian Learning , 1997, Neural Networks.

[73]  J. Leo van Hemmen,et al.  Development of spatiotemporal receptive fields of simple cells: I. Model formulation , 1997, Biological Cybernetics.

[74]  Klaus Obermayer,et al.  Singularities in Primate Orientation Maps , 1997, Neural Computation.

[75]  M. Stryker,et al.  Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats , 1997, Neuron.

[76]  C. Gilbert,et al.  Distortions of visuotopic map match orientation singularities in primary visual cortex , 1997, Nature.

[77]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[78]  G. Goodhill,et al.  Influences on the global structure of cortical maps , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[79]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[80]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[81]  Kenneth D. Miller,et al.  Equivalence of a Sprouting-and-Retraction Model and Correlation-Based Plasticity Models of Neural Development , 1998, Neural Computation.

[82]  M. Weliky,et al.  Recording and manipulating the in vivo correlational structure of neuronal activity during visual cortical development. , 1999, Journal of neurobiology.

[83]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[84]  Terrence J. Sejnowski,et al.  Relation Between Retinotopical and Orientation Maps in Visual Cortex , 1999, Neural Computation.

[85]  K. Miller,et al.  Is the development of orientation selectivity instructed by activity? , 1999, Journal of neurobiology.

[86]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[87]  L. C. Katz,et al.  Development of ocular dominance columns in the absence of retinal input , 1999, Nature Neuroscience.

[88]  N. Swindale,et al.  How many maps are there in visual cortex? , 2000, Cerebral cortex.

[89]  K. Pawelzik,et al.  How can squint change the spacing of ocular dominance columns? , 2000, Journal of Physiology-Paris.

[90]  B F Reber,et al.  L‐type Ca2+ channels and purinergic P2X2 cation channels participate in calcium‐tyrosine kinase‐mediated PC12 growth cone arrest , 2000, The European journal of neuroscience.

[91]  Tobias Bonhoeffer,et al.  An Analysis of Orientation and Ocular Dominance Patterns in the Visual Cortex of Cats and Ferrets , 2000, Neural Computation.

[92]  J. Troy,et al.  Modeling cat retinal beta-cell arrays , 2000, Visual Neuroscience.

[93]  D. S. Kim,et al.  Coincidence of ipsilateral ocular dominance peaks with orientation pinwheel centers in cat visual cortex , 2000, Neuroreport.

[94]  C Blakemore,et al.  Morphology and Growth Patterns of Developing Thalamocortical Axons , 2000, The Journal of Neuroscience.

[95]  L. C. Katz,et al.  Early development of ocular dominance columns. , 2000, Science.

[96]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[97]  B. Chapman,et al.  Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity , 2000, The Journal of Neuroscience.

[98]  Amiram Grinvald,et al.  Visual cortex maps are optimized for uniform coverage , 2000, Nature Neuroscience.

[99]  D. Chklovskii,et al.  A wire length minimization approach to ocular dominance patterns in mammalian visual cortex , 2000 .

[100]  A Shmuel,et al.  Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[101]  R. Reid,et al.  Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development , 2000, Nature Neuroscience.

[102]  G. Goodhill,et al.  Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. , 2000, Network.

[103]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[104]  M P Stryker,et al.  Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age , 2001, The Journal of comparative neurology.

[105]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[106]  David G. Jones,et al.  Development of cytochrome oxidase blobs in visual cortex of normal and visually deprived cats. , 2001, Cerebral cortex.

[107]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[108]  J. Leo van Hemmen,et al.  Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex , 2001, Biological Cybernetics.

[109]  K D Miller,et al.  Effects of monocular deprivation and reverse suture on orientation maps can be explained by activity-instructed development of geniculocortical connections , 2001, Visual Neuroscience.

[110]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[111]  M. Sur,et al.  Development and plasticity of cortical areas and networks , 2001, Nature Reviews Neuroscience.

[112]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[113]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[114]  F. Wolf,et al.  Genetic Influence on Quantitative Features of Neocortical Architecture , 2002, The Journal of Neuroscience.

[115]  D. Fitzpatrick,et al.  Spatial coding of position and orientation in primary visual cortex , 2002, Nature Neuroscience.

[116]  D. Ts'o,et al.  Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. , 2002, Journal of neurophysiology.

[117]  K. Miller,et al.  Opponent Inhibition A Developmental Model of Layer 4 of the Neocortical Circuit , 2002, Neuron.

[118]  Lawrence C Katz,et al.  Ocular dominance development revisited , 2002, Current Opinion in Neurobiology.

[119]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[120]  M. Volgushev,et al.  Independence of visuotopic representation and orientation map in the visual cortex of the cat , 2003, The European journal of neuroscience.

[121]  Jonathan C Horton,et al.  The Representation of Retinal Blood Vessels in Primate Striate Cortex , 2003, The Journal of Neuroscience.

[122]  J. Alonso,et al.  Two different types of Y cells in the cat lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[123]  Peter Dayan,et al.  Pattern formation and cortical maps , 2003, Journal of Physiology-Paris.

[124]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[125]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[126]  Robert Shapley,et al.  Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response , 2003, Journal of Physiology-Paris.

[127]  Amir Shmuel,et al.  The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. , 2003, Cerebral cortex.

[128]  R Clay Reid,et al.  Materials and Methods Som Text Figs. S1 to S7 References Movies S1 to S7 Role of Subplate Neurons in Functional Maturation of Visual Cortical Columns , 2022 .

[129]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[130]  Nicholas V. Swindale,et al.  Coverage and the design of striate cortex , 1991, Biological Cybernetics.

[131]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[132]  Mriganka Sur,et al.  Local networks in visual cortex and their influence on neuronal responses and dynamics , 2004, Journal of Physiology-Paris.

[133]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[134]  P. Hammond,et al.  Orientation bias of cat dorsal lateral geniculate cells: directional analysis of the major axis of the receptive field centre , 2004, Experimental Brain Research.

[135]  Robert Shapley,et al.  Correlation of local and global orientation and spatial frequency tuning in macaque V1 , 2004, The Journal of physiology.

[136]  H. Ikeda,et al.  The development of spatial resolving power of lateral geniculate neurones in kittens , 1978, Experimental Brain Research.

[137]  Dario L Ringach,et al.  Haphazard wiring of simple receptive fields and orientation columns in visual cortex. , 2004, Journal of neurophysiology.

[138]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[139]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[140]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[141]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[142]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[143]  Peter J Diggle,et al.  Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells , 2005, Visual Neuroscience.

[144]  Chun-I Yeh,et al.  Receptive field size and response latency are correlated within the cat visual thalamus. , 2005, Journal of neurophysiology.

[145]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[146]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[147]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[148]  Henry Kennedy,et al.  The development of cortical connections , 2006, The European journal of neuroscience.

[149]  M. Tsodyks,et al.  Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back , 2006, Journal of Computational Neuroscience.

[150]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[151]  Risto Miikkulainen,et al.  Joint maps for orientation, eye, and direction preference in a self-organizing model of V1 , 2006, Neurocomputing.

[152]  S. Löwel,et al.  The layout of functional maps in area 18 of strabismic cats , 2006, Neuroscience.

[153]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[154]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[155]  J. Cowan,et al.  Simultaneous constraints on pre- and post-synaptic cells couple cortical feature maps in a 2D geometric model of orientation preference. , 2006, Mathematical medicine and biology : a journal of the IMA.

[156]  M. Weliky,et al.  Simple fall-off pattern of correlated neural activity in the developing lateral geniculate nucleus , 2006, Nature Neuroscience.

[157]  Siegrid Löwel,et al.  Optical imaging in cat area 18: Strabismus does not enhance the segregation of ocular dominance domains , 2006, NeuroImage.

[158]  Stephen J Eglen,et al.  Development of regular cellular spacing in the retina: theoretical models. , 2006, Mathematical medicine and biology : a journal of the IMA.