Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after‐spike dynamics

We present a model that describes the generation of the spatial (grid fields) and temporal (phase precession) properties of medial entorhinal cortical (MEC) neurons by combining network and intrinsic cellular properties. The model incorporates network architecture derived from earlier attractor map models, and is implemented in 1D for simplicity. Periodic driving of conjunctive (position × head‐direction) layer‐III MEC cells at theta frequency with intensity proportional to the rat's speed, moves an ‘activity bump’ forward in network space at a corresponding speed. The addition of prolonged excitatory currents and simple after‐spike dynamics resembling those observed in MEC stellate cells (for which new data are presented) accounts for both phase precession and the change in scale of grid fields along the dorso‐ventral axis of MEC. Phase precession in the model depends on both synaptic connectivity and intrinsic currents, each of which drive neural spiking either during entry into, or during exit out of a grid field. Thus, the model predicts that the slope of phase precession changes between entry into and exit out of the field. The model also exhibits independent variation in grid spatial period and grid field size, which suggests possible experimental tests of the model. © 2011 Wiley Periodicals, Inc.

[1]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[2]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[3]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[4]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[5]  E. Buhl,et al.  Morphology of identified entorhinal neurons projecting to the hippocampus. A light microscopical study combining retrograde tracing and intracellular injection , 1989, Neuroscience.

[6]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[10]  S. Mizumori,et al.  Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[12]  A. Alonso,et al.  Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. , 1993, Journal of neurophysiology.

[13]  B. McNaughton,et al.  Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[15]  Bruce L. McNaughton,et al.  A Model of the Neural Basis of the Rat's Sense of Direction , 1994, NIPS.

[16]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[18]  J. Taube Head direction cells recorded in the anterior thalamic nuclei of freely moving rats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[20]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[21]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[22]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[23]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[25]  A. Alonso,et al.  Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro , 1997, Neuroscience.

[26]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[27]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[29]  Ali A. Minai,et al.  Latent Attractors: A Model for Context-Dependent Place Representations in the Hippocampus , 2000, Neural Computation.

[30]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[31]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[32]  Bruce L. McNaughton,et al.  Place cell firing shows an inertia-like process , 2000, Neurocomputing.

[33]  Thomas G. Dietterich,et al.  Editors. Advances in Neural Information Processing Systems , 2002 .

[34]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[35]  Michael E Hasselmo,et al.  Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons , 2004, Hippocampus.

[36]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[37]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[38]  B. McNaughton,et al.  The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats , 1983, Experimental Brain Research.

[39]  E. J. Green,et al.  Head-direction cells in the rat posterior cortex , 1994, Experimental Brain Research.

[40]  K. Lingenhöhl,et al.  Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains , 2004, Experimental Brain Research.

[41]  Chris Eliasmith,et al.  A Controlled Attractor Network Model of Path Integration in the Rat , 2005, Journal of Computational Neuroscience.

[42]  B. McNaughton,et al.  Self-Motion and the Hippocampal Spatial Metric , 2005, The Journal of Neuroscience.

[43]  B. McNaughton,et al.  Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus , 2005, Hippocampus.

[44]  P. E. Sharp,et al.  Movement-related correlates of single-cell activity in the medial mammillary nucleus of the rat during a pellet-chasing task. , 2005, Journal of neurophysiology.

[45]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[46]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[47]  E. Moser,et al.  Spatial representation and the architecture of the entorhinal cortex , 2006, Trends in Neurosciences.

[48]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[49]  G. Buzsáki Rhythms of the brain , 2006 .

[50]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[51]  G. Einevoll,et al.  From grid cells to place cells: A mathematical model , 2006, Hippocampus.

[52]  Mark C. Fuhs,et al.  A Spin Glass Model of Path Integration in Rat Medial Entorhinal Cortex , 2006, The Journal of Neuroscience.

[53]  J. O’Keefe,et al.  An oscillatory interference model of grid cell firing , 2007, Hippocampus.

[54]  K. Jeffery,et al.  Experience-dependent rescaling of entorhinal grids , 2007, Nature Neuroscience.

[55]  H. T. Blair,et al.  Scale-Invariant Memory Representations Emerge from Moiré Interference between Grid Fields That Produce Theta Oscillations: A Computational Model , 2007, The Journal of Neuroscience.

[56]  B. McNaughton,et al.  Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons , 2007, Trends in Neurosciences.

[57]  Xiaoming Jin,et al.  Recurrent Circuits in Layer II of Medial Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[58]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[59]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[60]  K. Wilcox,et al.  Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex , 2007, Neuroscience.

[61]  Paul F. M. J. Verschure,et al.  A Model of Grid Cells Based on a Twisted Torus Topology , 2007, Int. J. Neural Syst..

[62]  Michael E. Hasselmo,et al.  Time Constants of h Current in Layer II Stellate Cells Differ along the Dorsal to Ventral Axis of Medial Entorhinal Cortex , 2008, The Journal of Neuroscience.

[63]  Alessandro Treves,et al.  The emergence of grid cells: Intelligent design or just adaptation? , 2008, Hippocampus.

[64]  M. Fyhn,et al.  Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex , 2008, Hippocampus.

[65]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[66]  Mark P. Brandon,et al.  Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory , 2008, Neural plasticity.

[67]  John A White,et al.  Artificial Synaptic Conductances Reduce Subthreshold Oscillations and Periodic Firing in Stellate Cells of the Entorhinal Cortex , 2008, The Journal of Neuroscience.

[68]  Ila R Fiete,et al.  What Grid Cells Convey about Rat Location , 2008, The Journal of Neuroscience.

[69]  M. Nolan,et al.  Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing Fields , 2008, Neuron.

[70]  N. Burgess Grid cells and theta as oscillatory interference: Theory and predictions , 2008, Hippocampus.

[71]  A D Redish,et al.  Prediction, sequences and the hippocampus , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[72]  John J Hopfield,et al.  Neurodynamics of mental exploration , 2009, Proceedings of the National Academy of Sciences.

[73]  Boris S. Gutkin,et al.  The Role of Ongoing Dendritic Oscillations in Single-Neuron Dynamics , 2009, PLoS Comput. Biol..

[74]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[75]  Michael E. Hasselmo,et al.  Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators , 2009, PLoS Comput. Biol..

[76]  Dobák Judit,et al.  PhD dissertation , 2011 .

[77]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .