A drift-diffusion model for robotic obstacle avoidance

We develop a stochastic framework for modeling and analysis of robot navigation in the presence of obstacles. We show that, with appropriate assumptions, the probability of a robot avoiding a given obstacle can be reduced to a function of a single dimensionless parameter which captures all relevant quantities of the problem. This parameter is analogous to the Péclet number considered in the literature on mass transport in advection-diffusion fluid flows. Using the framework we also compute statistics of the time required to escape an obstacle in an informative case. The results of the computation show that adding noise to the navigation strategy can improve performance. Finally, we present experimental results that illustrate these performance improvements on a robotic platform.

[1]  Alain Dassargues,et al.  Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments , 2005 .

[2]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[3]  Yoram Koren,et al.  Real-time obstacle avoidance for fact mobile robots , 1989, IEEE Trans. Syst. Man Cybern..

[4]  Kevin C. Galloway,et al.  X-RHex: A Highly Mobile Hexapedal Robot for Sensorimotor Tasks , 2010 .

[5]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[6]  F. Ballani,et al.  Generalizations of Mat\'ern's hard-core point processes , 2012, 1209.2566.

[7]  D. Stoyan,et al.  On One of Matérn's Hard‐core Point Process Models , 1985 .

[8]  Daniel E. Koditschek,et al.  Automated gait adaptation for legged robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[10]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[11]  Daniel E. Koditschek,et al.  Visual Servoing for Nonholonomically Constrained Three Degree of Freedom Kinematic Systems , 2007, Int. J. Robotics Res..

[12]  Amit Singer,et al.  Partially Reflected Diffusion , 2008, SIAM J. Appl. Math..

[13]  Daniel E. Koditschek,et al.  Active sensing for dynamic, non-holonomic, robust visual servoing , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Daniel E. Koditschek,et al.  A framework for the coordination of legged robot gaits , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[15]  Aaron M. Johnson,et al.  Autonomous legged hill and stairwell ascent , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[16]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[17]  Daniel E. Koditschek,et al.  Dynamical trajectory replanning for uncertain environments , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[18]  Emilio Frazzoli,et al.  High-speed flight in an ergodic forest , 2012, 2012 IEEE International Conference on Robotics and Automation.

[19]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[20]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[21]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[22]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[23]  Paulo Martins Engel,et al.  Exploratory Navigation Based on Dynamical Boundary Value Problems , 2006, J. Intell. Robotic Syst..

[24]  H. J. Kushner,et al.  Stochastic Stability , 2005 .

[25]  A. Ladd,et al.  Boundary conditions for stochastic solutions of the convection-diffusion equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[27]  Daniel E. Koditschek The Control of Natural Motion in Mechanical Systems , 1991 .