Deep Orientation Uncertainty Learning based on a Bingham Loss

Reasoning about uncertain orientations is one of the core problems in many perception tasks such as object pose estimation or motion estimation. In these scenarios, poor illumination conditions, sensor limitations, or appearance invariance may result in highly uncertain estimates. In this work, we propose a novel learning based representation for orientation uncertainty. Characterizing uncertainty over unit quaternions with the Bingham distribution allows us to formulate a loss that naturally captures the antipodal symmetry of the representation. We discuss the interpretability of the learned distribution parameters and demonstrate the feasibility of our approach on several challenging real-world pose estimation tasks involving uncertain orientations.

[1]  C. Herz BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .

[2]  Zoltan-Csaba Marton,et al.  Implicit 3D Orientation Learning for 6D Object Detection from RGB Images , 2018, ECCV.

[3]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[4]  Slobodan Ilic,et al.  Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC , 2018, NeurIPS.

[5]  Leonidas J. Guibas,et al.  Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Sen Wang,et al.  End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks , 2018, Int. J. Robotics Res..

[7]  Andrew T. A. Wood,et al.  Saddlepoint approximations for the normalizing constant of Fisher--Bingham distributions on products of spheres and Stiefel manifolds , 2013 .

[8]  Manolis I. A. Lourakis,et al.  T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-Less Objects , 2017, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[9]  Howie Choset,et al.  Estimating SE(3) elements using a dual quaternion based linear Kalman filter , 2016, Robotics: Science and Systems.

[10]  Gregory D. Hager,et al.  A Unified Framework for Multi-View Multi-Class Object Pose Estimation , 2018, ECCV.

[11]  Sen Wang,et al.  DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Pascal Fua,et al.  Real-Time Seamless Single Shot 6D Object Pose Prediction , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Song-Chun Zhu,et al.  Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation , 2018, NeurIPS.

[14]  A. Weigend,et al.  Estimating the mean and variance of the target probability distribution , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[15]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[16]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[17]  Sebastian Nowozin,et al.  Deep Directional Statistics: Pose Estimation with Uncertainty Quantification , 2018, ECCV.

[18]  Hannes Sommer,et al.  Why and How to Avoid the Flipped Quaternion Multiplication , 2018, ArXiv.

[19]  Cees Snoek,et al.  Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on N-Spheres , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Julien Langou,et al.  Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.

[21]  Leslie Pack Kaelbling,et al.  Tracking the spin on a ping pong ball with the quaternion Bingham filter , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Andrew T. A. Wood,et al.  On the derivatives of the normalising constant of the Bingham distribution , 2007 .

[23]  Yi Li,et al.  DeepIM: Deep Iterative Matching for 6D Pose Estimation , 2018, International Journal of Computer Vision.

[24]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[25]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[26]  Adrien Gaidon,et al.  ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Eric Brachmann,et al.  BOP: Benchmark for 6D Object Pose Estimation , 2018, ECCV.

[28]  Tomonari Sei,et al.  On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method , 2018, Stat. Comput..

[29]  C. Bishop Mixture density networks , 1994 .

[30]  Thomas Brox,et al.  Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Eric Brachmann,et al.  Learning 6D Object Pose Estimation Using 3D Object Coordinates , 2014, ECCV.

[32]  Silvio Savarese,et al.  DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Sen Wang,et al.  VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem , 2017, AAAI.

[34]  Rafael Cabeza,et al.  A novel 2D/3D database with automatic face annotation for head tracking and pose estimation , 2016, Comput. Vis. Image Underst..

[35]  Yung-Yu Chuang,et al.  FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation From a Single Image , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Alan Edelman,et al.  The efficient evaluation of the hypergeometric function of a matrix argument , 2006, Math. Comput..

[37]  Gary R. Bradski,et al.  Monte Carlo Pose Estimation with Quaternion Kernels and the Bingham Distribution , 2011, Robotics: Science and Systems.

[38]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[39]  Torsten Sattler,et al.  Understanding the Limitations of CNN-Based Absolute Camera Pose Regression , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).