Humanoid arm motion planning using stereo vision and RRT search

This paper describes an experimental stereo vision based motion planning system for humanoid robots. The goal is to automatically generate arm trajectories that avoid obstacles in unknown environments from high-level task commands. Our system consists of three components: 1) environment sensing using stereo vision with disparity map generation and on-line consistency checking, 2) probabilistic mesh modeling in order to accumulate continuous vision input, and 3) motion planning for the robot arm using RRTs (rapidly exploring random trees). We demonstrate results from experiments using an implementation designed for the humanoid robot H7.

[1]  Satoshi Kagami,et al.  Design and Implementation of Onbody Real-time Depthmap Generation System , 2000 .

[2]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[3]  R. Bolles,et al.  Spatiotemporal Consistency Checking of Passive Renge Data , 1993 .

[4]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[5]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  Katsushi Ikeuchi,et al.  Spherical Representations: for EGI to SAI , 1994, Object Representation in Computer Vision.

[7]  Keiichiro Hoashi,et al.  Humanoid robot-development of an information assistant robot Hadaly , 1997, Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN'97 SENDAI.

[8]  Martin Buss,et al.  ViGWaM - An Emulation Environment for a Vision Guided Virtual Walking Machine , 2000 .

[9]  Masayuki Inaba,et al.  Motion planning for humanoid robots under obstacle and dynamic balance constraints , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Bernhard Nebel,et al.  A fast, accurate and robust method for self-localization in polygonal environments using laser range finders , 2001, Adv. Robotics.

[11]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Hideo Saito,et al.  Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences , 1998 .

[14]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[15]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[16]  R. Y. Tsai,et al.  An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision , 1986, CVPR 1986.

[17]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[18]  Henning Tolle,et al.  Motion planning with many degrees of freedom-random reflections at C-space obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Francis K. H. Quek,et al.  An Abstraction-Based Approach to 3-D Pose Determination from Range Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Toshikazu Kawasaki,et al.  Design of prototype humanoid robotics platform for HRP , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Masayuki Inaba,et al.  Incremental mesh modeling and hierarchical object recognition using multiple range images , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[22]  Adrian Hilton,et al.  Reliable Surface Reconstructiuon from Multiple Range Images , 1996, ECCV.

[23]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[24]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[25]  Masayuki Inaba,et al.  Dynamically-Stable Motion Planning for Humanoid Robots , 2002, Auton. Robots.

[26]  Rodney A. Brooks,et al.  Model-Based Three-Dimensional Interpretations of Two-Dimensional Images , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[28]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[29]  John J. Leonard,et al.  Explore and return: experimental validation of real-time concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[30]  Masayuki Inaba,et al.  Visual navigation using view-sequenced route representation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.