T1DBase: integration and presentation of complex data for type 1 diabetes research

T1DBase () [Smink et al. (2005) Nucleic Acids Res., 33, D544–D549; Burren et al. (2004) Hum. Genomics, 1, 98–109] is a public website and database that supports the type 1 diabetes (T1D) research community. T1DBase provides a consolidated T1D-oriented view of the complex data world that now confronts medical researchers and enables scientists to navigate from information they know to information that is new to them. Overview pages for genes and markers summarize information for these elements. The Gene Dossier summarizes information for a list of genes. GBrowse [Stein et al. (2002) Genome Res., 10, 1599–1610] displays genes and other features in their genomic context, and Cytoscape [Shannon et al. (2003) Genome Res., 13, 2498–2504] shows genes in the context of interacting proteins and genes. The Beta Cell Gene Atlas shows gene expression in β cells, islets, and related cell types and lines, and the Tissue Expression Viewer shows expression across other tissues. The Microarray Viewer shows expression from more than 20 array experiments. The Beta Cell Gene Expression Bank contains manually curated gene and pathway annotations for genes expressed in β cells. T1DMart is a query tool for markers and genotypes. PosterPages are ‘home pages’ about specific topics or datasets. The key challenge, now and in the future, is to provide powerful informatics capabilities to T1D scientists in a form they can use to enhance their research.

[1]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[2]  E. Birney,et al.  EnsMart: a generic system for fast and flexible access to biological data. , 2003, Genome research.

[3]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Campagne,et al.  TissueInfo: high-throughput identification of tissue expression profiles and specificity. , 2001, Nucleic acids research.

[5]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[6]  Gustavo Glusman,et al.  Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden. , 2006, American journal of human genetics.

[7]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[8]  A. Fraser,et al.  A first-draft human protein-interaction map , 2004, Genome Biology.

[9]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[10]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[12]  M. MacDonald,et al.  Plans for HDBase—a research community website for Huntington's Disease , 2003, Clinical Neuroscience Research.

[13]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[14]  Sophie Palmer,et al.  Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History , 2006, PLoS genetics.

[15]  Lukasz Huminiecki,et al.  Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases , 2003, BMC Genomics.

[16]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[17]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[18]  Andreas Prlic,et al.  Ensembl 2006 , 2005, Nucleic Acids Res..

[19]  Helen Schuilenburg,et al.  Development of an integrated genome informatics, data management and workflow infrastructure: A toolbox for the study of complex disease genetics , 2004, Human Genomics.

[20]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): updates and enhancements , 2005, Nucleic Acids Res..

[21]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[22]  Peter J. Tonellato,et al.  The Rat Genome Database (RGD): developments towards a phenome database , 2004, Nucleic Acids Res..

[23]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[24]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[25]  Yang Wang,et al.  T1DBase, a community web-based resource for type 1 diabetes research , 2004, Nucleic Acids Res..

[26]  James G. R. Gilbert,et al.  The vertebrate genome annotation (Vega) database , 2004, Nucleic Acids Res..

[27]  Jonathan Crabtree,et al.  Transcriptional program of the endocrine pancreas in mice and humans. , 2003, Diabetes.

[28]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[29]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[30]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[31]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[32]  Grant Morahan,et al.  Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. , 2005, Diabetes.