A bioinspired dynamical vertical climbing robot

This paper describes the inspiration for, design, analysis, and implementation of, and experimentation with the first dynamical vertical climbing robot. Biologists have proposed a pendulous climbing model that abstracts remarkable similarities in dynamical wall scaling behavior exhibited by radically different animal species. We numerically study a version of that pendulous climbing template dynamically scaled for applicability to utilitarian payloads with conventional electronics and actuation. This simulation study reveals that the incorporation of passive compliance can compensate for the scaled model’s poorer power density and scale disadvantages relative to biology. However, the introduction of additional dynamical elements raises new concerns about stability regarding both the power stroke and limb coordination schemes that we allay via mathematical analysis of further simplified models. Combining these numerical and analytical insights into a series of design prototypes, we document the correspondence of the various models to the scaled platforms and report that our final prototype climbs dynamically at vertical speeds up to 0.67 m/s (1.5 body-lengths per second, in rough agreement with our models’ predictions).

[1]  J. Guckenheimer,et al.  Estimating the phase of synchronized oscillators. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  R. Full,et al.  Dynamics of rapid vertical climbing in cockroaches reveals a template , 2006, Journal of Experimental Biology.

[3]  Daniel E. Koditschek,et al.  Toward a formal framework for open-loop stabilization of rhythmic tasks , 2004 .

[4]  Sangbae Kim,et al.  SpinybotII: climbing hard walls with compliant microspines , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[5]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory , 2000, Biological Cybernetics.

[6]  Jizhong Xiao,et al.  Design of Mobile Robots with Wall Climbing Capability , 2005, AIM 2005.

[7]  Ronald S. Fearing,et al.  DASH: A dynamic 16g hexapedal robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Mark R. Cutkosky,et al.  Scaling Hard Vertical Surfaces with Compliant Microspine Arrays , 2006, Int. J. Robotics Res..

[9]  Daniel E. Koditschek,et al.  A framework for the coordination of legged robot gaits , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[10]  Alfred A. Rizzi,et al.  Gait Regulation and Feedback on a Robotic Climbing Hexapod , 2006, Robotics: Science and Systems.

[11]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[12]  Ian W. Hunter,et al.  A comparative analysis of actuator technologies for robotics , 1992 .

[13]  M. Sitti,et al.  Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives , 2007, IEEE/ASME Transactions on Mechatronics.

[14]  Jonathan E. Clark,et al.  A Spring Assisted One Degree of Freedom Climbing Model , 2006 .

[15]  Jonathan E. Clark,et al.  A self-exciting controller for high-speed vertical running , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[17]  Daniel E. Koditschek,et al.  Analysis of a Simplified Hopping Robot , 1991, Int. J. Robotics Res..

[18]  Mark R. Cutkosky,et al.  Foot design and integration for bioinspired climbing robots , 2006, SPIE Defense + Commercial Sensing.

[19]  Tao Chen,et al.  Design of a Bio-inspired Dynamical Vertical Climbing Robot , 2007, Robotics: Science and Systems.

[20]  Philip Holmes,et al.  Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects , 2002, Biological Cybernetics.

[21]  José Manuel Pastor,et al.  A climbing autonomous robot for inspection applications in 3D complex environments , 2000, Robotica.

[22]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[23]  Daniel E. Koditschek,et al.  Planning and Control of Robotic Juggling and Catching Tasks , 1994, Int. J. Robotics Res..

[24]  Martin Buehler,et al.  Experimentally validated bounding models for the Scout II quadrupedal robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Daniel E. Koditschek,et al.  Rapid pole climbing with a quadrupedal robot , 2009, 2009 IEEE International Conference on Robotics and Automation.

[26]  Steven Dubowsky,et al.  A Simplified Cartesian-Computed Torque Controller for Highly Geared Systems and Its Application to an Experimental Climbing Robot , 2000 .

[27]  George A. Bekey,et al.  AUTONOMOUS ROBOTS, From Biological Inspiration to Implementation and Control, by G.A. Bekey, MIT Press, 2005, xv + 577 pp., index, ISBN 0-262-02578-7, 25 pages of references (Hb. £35.95) , 2005, Robotica.

[28]  Philip Holmes,et al.  A Simply Stabilized Running Model , 2005, SIAM Rev..

[29]  Roy Kornbluh,et al.  Electrostrictive polymer artificial muscle actuators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[30]  Martin Buehler,et al.  Design, control, and energetics of an electrically actuated legged robot , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[31]  R. Alexander,et al.  A dynamic similarity hypothesis for the gaits of quadrupedal mammals , 2009 .

[32]  Roger D. Quinn,et al.  Mechanized cockroach footpaths enable cockroach-like mobility , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[33]  Jonathan E. Clark,et al.  Toward a Dynamic Vertical Climbing Robot , 2006 .

[34]  Roger D. Quinn,et al.  A small wall-walking robot with compliant, adhesive feet , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Martin Buehler,et al.  Reliable stair climbing in the simple hexapod 'RHex' , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[36]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[37]  Timothy Bretl,et al.  Motion planning for a three-limbed climbing robot in vertical natural terrain , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[38]  R. M. Alexander,et al.  Elastic mechanisms in animal movement , 1988 .

[39]  Daniel E. Koditschek,et al.  A Simple Juggling Robot: Theory and Experimentation , 1989, ISER.

[40]  Daniel E. Koditschek,et al.  Sprawl angle in simplified models of vertical climbing: Implications for robots and roaches , 2011 .

[41]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[42]  W. R. Provancher,et al.  ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot , 2011, IEEE/ASME Transactions on Mechatronics.

[43]  Metin Sitti,et al.  Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot using Fibrillar Adhesives , 2011, Int. J. Robotics Res..

[44]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[45]  G. Cavagna,et al.  Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. , 1977, The American journal of physiology.

[46]  T. McMahon,et al.  A model of scale effects in mammalian quadrupedal running. , 2002, The Journal of experimental biology.

[47]  Guido La Rosa,et al.  A low-cost lightweight climbing robot for the inspection of vertical surfaces , 2002 .

[48]  Kevin C. Galloway,et al.  X-RHex: A Highly Mobile Hexapedal Robot for Sensorimotor Tasks , 2010 .

[49]  Oussama Khatib,et al.  The robotics review 1 , 1989 .

[50]  T. McMahon,et al.  The mechanics of running: how does stiffness couple with speed? , 1990, Journal of biomechanics.

[51]  Lawrence C. Rome,et al.  Why animals have different muscle fibre types , 1988, Nature.

[52]  Oussama Khatib,et al.  Experimental Robotics IV, The 4th International Symposium, Stanford, California, USA, June 30 - July 2, 1995 , 1997, ISER.

[53]  Daniel E. Koditschek,et al.  Robotics in scansorial environments , 2005, SPIE Defense + Commercial Sensing.

[54]  Howie Choset,et al.  A dynamic single actuator vertical climbing robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[55]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[56]  Philip Holmes,et al.  Mechanical models for insect locomotion: dynamics and stability in the horizontal plane – II. Application , 2000, Biological Cybernetics.

[57]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[58]  R. Full,et al.  Dynamics of geckos running vertically , 2006, Journal of Experimental Biology.

[59]  Howie Choset,et al.  The ParkourBot - a dynamic BowLeg climbing robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[60]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .