Analytic Manifold Learning: Unifying and Evaluating Representations for Continuous Control

We address the problem of learning reusable state representations from streaming high-dimensional observations. This is important for areas like Reinforcement Learning (RL), which yields non-stationary data distributions during training. We make two key contributions. First, we propose an evaluation suite that measures alignment between latent and true low-dimensional states. We benchmark several widely used unsupervised learning approaches. This uncovers the strengths and limitations of existing approaches that impose additional constraints/objectives on the latent space. Our second contribution is a unifying mathematical formulation for learning latent relations. We learn analytic relations on source domains, then use these relations to help structure the latent space when learning on target domains. This formulation enables a more general, flexible and principled way of shaping the latent space. It formalizes the notion of learning independent relations, without imposing restrictive simplifying assumptions or requiring domain-specific information. We present mathematical properties, concrete algorithms for implementation and experimental validation of successful learning and transfer of latent relations.

[1]  H. Cartan,et al.  Variétés analytiques réelles et variétés analytiques complexes , 1957 .

[2]  Zhan Song,et al.  Hand posture recognition using approximate vanishing ideal generators , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[3]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[4]  Yoshihiko Hasegawa,et al.  Gradient Boosts the Approximate Vanishing Ideal , 2019, AAAI.

[5]  Gang Xiao,et al.  Deep vanishing component analysis network for pattern classification , 2018, Neurocomputing.

[6]  Hamidreza Chitsaz,et al.  Principal Variety Analysis , 2017, CoRL.

[7]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[8]  Stephan Mandt,et al.  Disentangled Sequential Autoencoder , 2018, ICML.

[9]  Anatolii A. Logunov,et al.  Analytic functions of several complex variables , 1965 .

[10]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[11]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[13]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[14]  Klaus Greff,et al.  Multi-Object Representation Learning with Iterative Variational Inference , 2019, ICML.

[15]  David Filliat,et al.  S-RL Toolbox: Environments, Datasets and Evaluation Metrics for State Representation Learning , 2018, ArXiv.

[16]  Yuval Tassa,et al.  DeepMind Control Suite , 2018, ArXiv.

[17]  Roi Livni,et al.  Vanishing Component Analysis , 2013, ICML.

[18]  Jan Peters,et al.  Reinforcement learning in robotics: A survey , 2013, Int. J. Robotics Res..

[19]  Jacques Frisch,et al.  Points de platitude d'un morphisme d'espaces analytiques complexes , 1967 .

[20]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[21]  Claudia Fassino,et al.  Almost vanishing polynomials for sets of limited precision points , 2008, J. Symb. Comput..

[22]  Yoshihiko Hasegawa,et al.  Spurious Vanishing Problem in Approximate Vanishing Ideal , 2019, IEEE Access.

[23]  W. Rudin Principles of mathematical analysis , 1964 .

[24]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[25]  Siddhartha S. Srinivasa,et al.  The YCB object and Model set: Towards common benchmarks for manipulation research , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[26]  Jürgen Schmidhuber,et al.  Incremental Slow Feature Analysis: Adaptive and Episodic Learning from High-Dimensional Input Streams , 2011, ArXiv.

[27]  Geoffrey E. Hinton,et al.  Attend, Infer, Repeat: Fast Scene Understanding with Generative Models , 2016, NIPS.

[28]  Tomas Sauer,et al.  Approximate varieties, approximate ideals and dimension reduction , 2007, Numerical Algorithms.

[29]  S. Łojasiewicz Introduction to Complex Analytic Geometry , 1991 .

[30]  Selman Akbulut,et al.  On approximating submanifolds by algebraic sets and a solution to the Nash conjecture , 1992 .

[31]  Roi Livni,et al.  Effective Semisupervised Learning on Manifolds , 2017, COLT.

[32]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[33]  Yair Bartal,et al.  Dimensionality reduction: theoretical perspective on practical measures , 2019, NeurIPS.

[34]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[35]  Wojciech Zaremba,et al.  OpenAI Gym , 2016, ArXiv.

[36]  Peter Henderson,et al.  An Introduction to Deep Reinforcement Learning , 2018, Found. Trends Mach. Learn..

[37]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[38]  Claudia Fassino,et al.  Simple varieties for limited precision points , 2013, Theor. Comput. Sci..

[39]  Wolfram Burgard,et al.  The limits and potentials of deep learning for robotics , 2018, Int. J. Robotics Res..

[40]  Tengyu Ma,et al.  A Non-generative Framework and Convex Relaxations for Unsupervised Learning , 2016, NIPS.

[41]  Arno Solin,et al.  Pioneer Networks: Progressively Growing Generative Autoencoder , 2018, ACCV.

[42]  Ulrike von Luxburg,et al.  Measures of distortion for machine learning , 2018, NeurIPS.

[43]  Yoshua Bengio,et al.  Unsupervised State Representation Learning in Atari , 2019, NeurIPS.

[44]  Yoshihiko Hasegawa,et al.  Noise-tolerant algebraic method for reconstruction of nonlinear dynamical systems , 2016 .

[45]  R. Ho Algebraic Topology , 2022 .

[46]  Joelle Pineau,et al.  Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks , 2019, AAAI.

[47]  David Filliat,et al.  State Representation Learning for Control: An Overview , 2018, Neural Networks.

[48]  Eberhard Freitag,et al.  Analytic Functions of Several Complex Variables , 2011 .

[49]  G. Birkhoff Extensions of Jentzsch’s theorem , 1957 .