An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation

Abstract This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.

[1]  Henk Nijmeijer,et al.  A passivity approach to controller-observer design for robots , 1993, IEEE Trans. Robotics Autom..

[2]  Javier Moreno-Valenzuela,et al.  Theory and experiments of global adaptive output feedback tracking control of manipulators , 2010 .

[3]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  Dan Koditschek,et al.  Natural motion for robot arms , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  D.M. Dawson,et al.  Global adaptive output feedback tracking control of robot manipulators , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[6]  Suguru Arimoto,et al.  Fundamental problems of robot control: Part II A nonlinear circuit theory towards an understanding of dexterous motions , 1995, Robotica.

[7]  Roberto Horowitz,et al.  Stability analysis of an adaptive controller for robotic manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[8]  V. Santibáñez,et al.  On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input , 2008 .

[9]  Antonio Loría,et al.  Uniform Parametric Convergence in the Adaptive Control of Mechanical Systems , 2005, Eur. J. Control.

[10]  P. Olver Nonlinear Systems , 2013 .

[11]  Howard M. Schwartz,et al.  Experimental results for output feedback adaptive robot control , 2006, Robotica.

[12]  Roman Smierzchalski,et al.  Designing a ship course controller by applying the adaptive backstepping method , 2012, Int. J. Appl. Math. Comput. Sci..

[13]  R. Kelly A Simple Set-point Robot Controller by Using Only Position Measurements* , 1993 .

[14]  Víctor Santibáñez,et al.  A Class of OFT Controllers for Torque-Saturated Robot Manipulators: Lyapunov Stability and Experimental Evaluation , 2008, J. Intell. Robotic Syst..

[15]  Ser Yong Lim,et al.  Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective , 1996, IEEE Trans. Control. Syst. Technol..

[16]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[17]  H. Nijmeijer,et al.  Bounded output feedback tracking control of fully actuated Euler-Lagrange systems , 1998 .

[18]  Mark W. Spong,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[19]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[20]  R. Ortega,et al.  A semiglobally stable output feedback PI2D regulator for robot manipulators , 1995, IEEE Trans. Autom. Control..

[21]  A. Loria,et al.  /spl delta/-persistency of excitation: a necessary and sufficient condition for uniform attractivity , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[22]  Fernando Reyes,et al.  Experimental evaluation of model-based controllers on a direct-drive robot arm , 2001 .

[23]  H. Nijmeijer,et al.  Bounded output feedback tracking control of fully-actuated Euler-Lagrange systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[24]  R. Ortega,et al.  Adaptive motion control design of robot manipulators: an input-output approach , 1989 .

[25]  M.S. de Queiroz,et al.  On global output feedback tracking control of robot manipulators , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[26]  V. Santibáñez,et al.  Uniform Global Asymptotic Stability of an Adaptive Output Feedback Tracking Controller for Robot Manipulators , 2011 .

[27]  S. Nicosia,et al.  Robot control by using only joint position measurements , 1990 .

[28]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[29]  Rob Dekkers,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[30]  Suguru Arimoto,et al.  Fundamental problems of robot control: Part I, Innovations in the realm of robot servo-loops , 1995, Robotica.

[31]  V. Santibáñez,et al.  Global trajectory tracking through output feedback for robot manipulators with bounded inputs , 2011 .

[32]  Abdelkader Abdessameud,et al.  A variable structure observer for the control of robot manipulators , 2006 .

[33]  Graham C. Goodwin,et al.  Adaptive computed torque control for rigid link manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[34]  Rafael Kelly,et al.  Global convergence of the adaptive PD controller with computed feedforward for robot manipulators , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[35]  V. Santibanez,et al.  Global asymptotic stability of bounded output feedback tracking control for robot manipulators , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[36]  Víctor Santibáñez,et al.  Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs , 2013 .

[37]  Pawel Dworak,et al.  Linear adaptive structure for control of a nonlinear MIMO dynamic plant , 2013, Int. J. Appl. Math. Comput. Sci..