Automatic 3D Object Detection from RGB-D Data Using PU-GAN

[1]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Daniel Cohen-Or,et al.  Patch-Based Progressive 3D Point Set Upsampling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Xiaoyong Shen,et al.  STD: Sparse-to-Dense 3D Object Detector for Point Cloud , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Silvio Savarese,et al.  Data-driven 3D Voxel Patterns for object category recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[7]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yan Wang,et al.  Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving , 2019, ICLR.

[9]  Daniel Cohen-Or,et al.  PU-GAN: A Point Cloud Upsampling Adversarial Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Daniel Cohen-Or,et al.  EC-Net: an Edge-aware Point set Consolidation Network , 2018, ECCV.

[13]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Longin Jan Latecki,et al.  Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[16]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Haojie Li,et al.  Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[20]  Daniel Cohen-Or,et al.  PU-Net: Point Cloud Upsampling Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Lizhuang Ma,et al.  FVNet: 3D Front-View Proposal Generation for Real-Time Object Detection from Point Clouds , 2019, 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).

[22]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Kris Kitani,et al.  Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[24]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).