Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

[1]  D. Wilson Insect walking. , 1966, Annual review of entomology.

[2]  P. Holmes,et al.  The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model , 1982, Journal of mathematical biology.

[3]  F. Delcomyn Factors Regulating Insect Walking , 1985 .

[4]  Mirko Krivánek,et al.  Simulated Annealing: A Proof of Convergence , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jung-Min Yang,et al.  Fault-tolerant locomotion of the hexapod robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[6]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[7]  Fred Delcomyn,et al.  Walking Robots and the Central and Peripheral Control of Locomotion in Insects , 1999, Auton. Robots.

[8]  S. Hooper,et al.  Central pattern generators , 2000, Current Biology.

[9]  S. Rossignol Locomotion and its recovery after spinal injury , 2000, Current Opinion in Neurobiology.

[10]  Ralf Der,et al.  Self-organized acquisition of situated behaviors , 2001, Theory in Biosciences.

[11]  Luigi Fortuna,et al.  Multi-template approach to realize central pattern generators for artificial locomotion control , 2002, Int. J. Circuit Theory Appl..

[12]  F. Pasemann Complex dynamics and the structure of small neural networks , 2002 .

[13]  F. Pasemann Complex dynamics and the structure of small neural networks , 2002, Network.

[14]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[15]  Tamio Arai,et al.  CPG model for autonomous decentralized multi-legged robot system - generation and transition of oscillation patterns and dynamics of oscillators , 2003, Robotics Auton. Syst..

[16]  Luigi Fortuna,et al.  An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  D. Graham The effect of amputation and leg restraint on the free walking coordination of the stick insectCarausius morosus , 2004, Journal of comparative physiology.

[18]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[19]  Frank Kirchner,et al.  Stability of walking in a multilegged robot suffering leg loss , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[20]  R. Quinn,et al.  Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. , 2004, Arthropod structure & development.

[21]  Masahiro Fujita,et al.  Autonomous evolution of dynamic gaits with two quadruped robots , 2005, IEEE Transactions on Robotics.

[22]  Holk Cruse,et al.  Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations , 2007, Biological Cybernetics.

[23]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[24]  Shinya Aoi,et al.  Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback , 2006, IEEE Transactions on Robotics.

[25]  Tamio Arai,et al.  Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control , 2006, Robotics Auton. Syst..

[26]  John Hallam,et al.  Improved, Simpler Neural Controllers for Lamprey Swimming , 2005, ICANN.

[27]  Florentin Wörgötter,et al.  Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines , 2007 .

[28]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[29]  Hubert Roth,et al.  Modular Reactive Neurocontrol for Biologically Inspired Walking Machines , 2007, Int. J. Robotics Res..

[30]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts , 2007, Int. J. Robotics Res..

[31]  Kemal Leblebicioglu,et al.  Torque Distribution in a Six-Legged Robot , 2007, IEEE Transactions on Robotics.

[32]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[33]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[34]  Florentin Wörgötter,et al.  Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines , 2008, Robotics Auton. Syst..

[35]  Bernard Espiau,et al.  Multisensor Input for CPG-Based Sensory---Motor Coordination , 2008, IEEE Transactions on Robotics.

[36]  KasabovNikola,et al.  2008 Special issue , 2008 .

[37]  Luc A P At An Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots , 2009, Cognitive Systems Monographs.

[38]  Volker Dürr,et al.  Principles of Insect Locomotion , 2009, Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots.

[39]  Silvia Daun-Gruhn,et al.  An inter-segmental network model and its use in elucidating gait-switches in the stick insect , 2011, Journal of Computational Neuroscience.

[40]  Daniel E. Koditschek,et al.  Disturbance detection, identification, and recovery by gait transition in legged robots , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Gerd Hirzinger,et al.  Analysis and evaluation of the stability of a biologically inspired, Leg loss tolerant gait for six- and eight-legged walking robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[42]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[43]  Risto Miikkulainen,et al.  Evolving Symmetry for Modular System Design , 2011, IEEE Trans. Evol. Comput..

[44]  Ansgar Büschges,et al.  From neuron to behavior: dynamic equation-based prediction of biological processes in motor control , 2011, Biological Cybernetics.

[45]  Nicola Vitiello,et al.  A robotic model to investigate human motor control , 2011, Biological Cybernetics.

[46]  Marc Timme,et al.  Self-organized adaptation of a simple neural circuit enables complex robot behaviour , 2011, ArXiv.

[47]  Shinya Aoi,et al.  Functional Roles of Phase Resetting in the Gait Transition of a Biped Robot From Quadrupedal to Bipedal Locomotion , 2012, IEEE Transactions on Robotics.

[48]  Florentin Wörgötter,et al.  Biologically inspired reactive climbing behavior of hexapod robots , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Florentin Wörgötter,et al.  Multiple chaotic central pattern generators for locomotion generation and leg damage compensation in a hexapod robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Jakob Christensen-Dalsgaard,et al.  Effects of asymmetry and learning on phonotaxis in a robot based on the lizard auditory system , 2012, Adapt. Behav..

[51]  Auke Jan Ijspeert,et al.  Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits , 2013, IEEE Transactions on Robotics.

[52]  Poramate Manoonpong,et al.  Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines , 2013, Front. Neural Circuits.

[53]  Florentin Wörgötter,et al.  Information dynamics based self-adaptive reservoir for delay temporal memory tasks , 2013, Evol. Syst..

[54]  Florentin Wörgötter,et al.  A SIMPLIFIED VARIABLE ADMITTANCE CONTROLLER BASED ON A VIRTUAL AGONIST-ANTAGONIST MECHANISM FOR ROBOT JOINT CONTROL , 2013 .

[55]  Jun Morimoto,et al.  Neural Combinatorial Learning of Goal-Directed Behavior with Reservoir Critic and Reward Modulated Hebbian Plasticity , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[56]  David Johan Christensen,et al.  Fault-tolerant gait learning and morphology optimization of a polymorphic walking robot , 2014, Evol. Syst..

[57]  Paolo Arena,et al.  Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II, An Insect Brain Computational Model , 2014, Cognitive Systems Monographs.