Adaptively Informed Trees (AIT*): Fast Asymptotically Optimal Path Planning through Adaptive Heuristics

Informed sampling-based planning algorithms exploit problem knowledge for better search performance. This knowledge is often expressed as heuristic estimates of solution cost and used to order the search. The practical improvement of this informed search depends on the accuracy of the heuristic.Selecting an appropriate heuristic is difficult. Heuristics applicable to an entire problem domain are often simple to define and inexpensive to evaluate but may not be beneficial for a specific problem instance. Heuristics specific to a problem instance are often difficult to define or expensive to evaluate but can make the search itself trivial.This paper presents Adaptively Informed Trees (AIT*), an almost-surely asymptotically optimal sampling-based planner based on BIT*. AIT* adapts its search to each problem instance by using an asymmetric bidirectional search to simultaneously estimate and exploit a problem-specific heuristic. This allows it to quickly find initial solutions and converge towards the optimum. AIT* solves the tested problems as fast as RRT-Connect while also converging towards the optimum.

[1]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[2]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[4]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[5]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[6]  Lydia E. Kavraki,et al.  Path planning using lazy PRM , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Maxim Likhachev,et al.  Truncated incremental search , 2016, Artif. Intell..

[8]  Siddhartha S. Srinivasa,et al.  Lazy Receding Horizon A* for Efficient Path Planning in Graphs with Expensive-to-Evaluate Edges , 2018, ICAPS.

[9]  Sven Koenig,et al.  A Generalized Framework for Lifelong Planning A* Search , 2005, ICAPS.

[10]  Emilio Frazzoli,et al.  Verification and Synthesis of Admissible Heuristics for Kinodynamic Motion Planning , 2017, IEEE Robotics and Automation Letters.

[11]  Hermann Kaindl,et al.  Bidirectional Heuristic Search Reconsidered , 1997, J. Artif. Intell. Res..

[12]  Jonathan D. Gammell,et al.  Advanced BIT* (ABIT*): Sampling-Based Planning with Advanced Graph-Search Techniques , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Larry S. Davis,et al.  Pattern Databases , 1979, Data Base Design Techniques II.

[14]  Siddhartha S. Srinivasa,et al.  A Unifying Formalism for Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-First Search over Paths with Edge Selectors , 2016, ICAPS.

[15]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[16]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[17]  Sven Koenig,et al.  A New Principle for Incremental Heuristic Search: Theoretical Results , 2006, ICAPS.

[18]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[19]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[20]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Richard E. Korf,et al.  Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.

[22]  Malte Helmert,et al.  Better Parameter-Free Anytime Search by Minimizing Time Between Solutions , 2012, SOCS.

[23]  Gianni Ferretti,et al.  Sampling-based optimal kinodynamic planning with motion primitives , 2018, Autonomous Robots.

[24]  Marco Pavone,et al.  Deterministic sampling-based motion planning: Optimality, complexity, and performance , 2015, ISRR.

[25]  Jeffrey A. Edlund,et al.  Axel and DuAxel rovers for the sustainable exploration of extreme terrains , 2012, J. Field Robotics.

[26]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search , 2017, Int. J. Robotics Res..

[27]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[28]  Wheeler Ruml,et al.  Robust Bidirectional Search via Heuristic Improvement , 2013, AAAI.

[29]  Dan Halperin,et al.  Collision detection or nearest-neighbor search? On the computational bottleneck in sampling-based motion planning , 2016, WAFR.

[30]  Gianni Ferretti,et al.  An Admissible Heuristic to Improve Convergence in Kinodynamic Planners Using Motion Primitives , 2020, IEEE Control Systems Letters.

[31]  Wheeler Ruml,et al.  Learning Inadmissible Heuristics During Search , 2011, ICAPS.

[32]  Siddhartha S. Srinivasa,et al.  Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Panagiotis Tsiotras,et al.  Use of relaxation methods in sampling-based algorithms for optimal motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[34]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[35]  Donghyuk Kim,et al.  Adaptive Lazy Collision Checking for Optimal Sampling-based Motion Planning , 2018, 2018 15th International Conference on Ubiquitous Robots (UR).

[36]  Siddhartha S. Srinivasa,et al.  Informed Sampling for Asymptotically Optimal Path Planning , 2018, IEEE Transactions on Robotics.

[37]  Sven Koenig,et al.  Adaptive A , 2005, AAMAS '05.

[38]  Jonathan D. Gammell,et al.  Informed Anytime Search for Continuous Planning Problems , 2017 .

[39]  Kris Hauser,et al.  Lazy collision checking in asymptotically-optimal motion planning , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).