Planning collision-free trajectories in time-varying environments: a two-level hierarchy

Global geometric algorithms for trajectory planning are used in conjunction with a local avoidance strategy. Simulations have been developed for a mobile robot in the plane among stationary and moving obstacles. Essentially, the robot has a geometric planner that provides a coarse trajectory (the path and the velocity along it), which may be modified by a (low-level) local avoidance module if sensors detect obstacles in the vicinity of the robot. This hierarchy makes effective use of the complementarity between global trajectory planning and local obstacle avoidance.<<ETX>>

[1]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[2]  Kamal Kant Trajectory planning in time varying environments , 1988 .

[3]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[4]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[5]  Matthew T. Mason,et al.  Robot Motion: Planning and Control , 1983 .

[6]  R. Brooks Solving the Find-Path Problem by Representing Free Space as Generalized Cones , 1982 .

[7]  R. Brooks Planning Collision- Free Motions for Pick-and-Place Operations , 1983 .

[8]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[9]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[10]  Elmer G. Gilbert,et al.  Distance functions and their application to robot path planning in the presence of obstacles , 1985, IEEE J. Robotics Autom..

[11]  Micha Sharir,et al.  Motion Planning in the Presence of Moving Obstacles , 1985, FOCS.

[12]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[13]  Eckhard Freund,et al.  Collision avoidance for industrial robots with arbitrary motion , 1984, J. Field Robotics.

[14]  J. Y. S. Luh A Scheme for Collision Avoidance with Minimum Distance Traveling for Industrial Robots , 1984, J. Field Robotics.

[15]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[16]  John E. Hopcroft,et al.  Movement Problems for 2-Dimensional Linkages , 1984, SIAM J. Comput..

[17]  Stephen M. Pollock,et al.  MINIMUM-TRAJECTORY PIPE ROUTING , 1974 .

[18]  S. M. Udupa,et al.  Collision Detection and Avoidance in Computer Controlled Manipulators , 1977, IJCAI.

[19]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[20]  Bernard Faverjon,et al.  Obstacle avoidance using an octree in the configuration space of a manipulator , 1984, ICRA.

[21]  Alan M. Thompson The Navigation System of the JPL Robot , 1977, IJCAI.

[22]  J. Nitao,et al.  A real-time reflexive pilot for an autonomous land vehicle , 1986, IEEE Control Systems Magazine.

[23]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).