Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control

Place coding in the hippocampus requires flexible combination of sensory inputs (e.g., environmental and self-motion information) with memory of past events. We show that mouse CA1 hippocampal spatial representations may either be anchored to external landmarks (place memory) or reflect memorized sequences of cell assemblies depending on the behavioral strategy spontaneously selected. These computational modalities correspond to different CA1 dynamical states, as expressed by theta and low- and high-frequency gamma oscillations, when switching from place to sequence memory-based processing. These changes are consistent with a shift from entorhinal to CA3 input dominance on CA1. In mice with a deletion of forebrain NMDA receptors, the ability of place cells to maintain a map based on sequence memory is selectively impaired and oscillatory dynamics are correspondingly altered, suggesting that oscillations contribute to selecting behaviorally appropriate computations in the hippocampus and that NMDA receptors are crucial for this function.

[1]  R. J. McDonald,et al.  Multiple Parallel Memory Systems in the Brain of the Rat , 2002, Neurobiology of Learning and Memory.

[2]  M. Vinck,et al.  NMDA Receptors Control Cue-Outcome Selectivity and Plasticity of Orbitofrontal Firing Patterns during Associative Stimulus-Reward Learning , 2012, Neuron.

[3]  R. Schmidt,et al.  Cross-Frequency Phase–Phase Coupling between Theta and Gamma Oscillations in the Hippocampus , 2012, The Journal of Neuroscience.

[4]  R. Morris,et al.  Distinct components of spatial learning revealed by prior training and NMDA receptor blockade , 1995, Nature.

[5]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[6]  Jeroen J Bos,et al.  The Lantern: An ultra-light micro-drive for multi-tetrode recordings in mice and other small animals , 2009, Journal of Neuroscience Methods.

[7]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[8]  Sean M Montgomery,et al.  Behavior-Dependent Coordination of Multiple Theta Dipoles in the Hippocampus , 2009, The Journal of Neuroscience.

[9]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[10]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[11]  R. Kempter,et al.  Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level , 2012, Proceedings of the National Academy of Sciences.

[12]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[13]  Martin Vinck,et al.  Improved measures of phase-coupling between spikes and the Local Field Potential , 2011, Journal of Computational Neuroscience.

[14]  Inah Lee,et al.  Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus , 2005, Neurobiology of Learning and Memory.

[15]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[16]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[17]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[18]  Jadin C. Jackson,et al.  Network dynamics of hippocampal cell‐assemblies resemble multiple spatial maps within single tasks , 2007, Hippocampus.

[19]  Leif H. Finkel,et al.  Ketamine Modulates Theta and Gamma Oscillations , 2010, Journal of Cognitive Neuroscience.

[20]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[21]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[22]  Sachin S. Deshmukh,et al.  Theta modulation in the medial and the lateral entorhinal cortices. , 2010, Journal of neurophysiology.

[23]  Frances S. Chance,et al.  Hippocampal Phase Precession from Dual Input Components , 2012, The Journal of Neuroscience.

[24]  G. Buzsáki,et al.  Distinct Representations and Theta Dynamics in Dorsal and Ventral Hippocampus , 2010, The Journal of Neuroscience.

[25]  Inah Lee,et al.  Time-Dependent Relationship between the Dorsal Hippocampus and the Prefrontal Cortex in Spatial Memory , 2003, The Journal of Neuroscience.

[26]  A. Fenton,et al.  Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames , 2010, PLoS biology.

[27]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[28]  Raymond P. Kesner,et al.  The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation , 2006, Behavioural Brain Research.

[29]  K M Gothard,et al.  Dynamics of Mismatch Correction in the Hippocampal Ensemble Code for Space: Interaction between Path Integration and Environmental Cues , 1996, The Journal of Neuroscience.

[30]  Stephen L. Cowen,et al.  Organization of hippocampal cell assemblies based on theta phase precession , 2006, Hippocampus.

[31]  L. Rondi-Reig,et al.  A new approach for modeling episodic memory from rodents to humans: The temporal order memory , 2010, Behavioural Brain Research.

[32]  J. Lisman,et al.  The Input–Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields , 2009, The Journal of Neuroscience.

[33]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[34]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[35]  Christian F. Doeller,et al.  Lateralized human hippocampal activity predicts navigation based on sequence or place memory , 2010, Proceedings of the National Academy of Sciences.

[36]  H. Eichenbaum,et al.  Cues that hippocampal place cells encode: Dynamic and hierarchical representation of local and distal stimuli , 1997, Hippocampus.

[37]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[38]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[40]  J. D. McGaugh,et al.  Inactivation of Hippocampus or Caudate Nucleus with Lidocaine Differentially Affects Expression of Place and Response Learning , 1996, Neurobiology of Learning and Memory.

[41]  D. W. In memory of ... , 1963, Science.

[42]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[43]  L. Rondi-Reig,et al.  Early detection of age-related memory deficits in individual mice , 2011, Neurobiology of Aging.

[44]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[45]  Jonathan R. Whitlock,et al.  Fragmentation of grid cell maps in a multicompartment environment , 2009, Nature Neuroscience.

[46]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[47]  Hannah Monyer,et al.  NMDA Receptor Ablation on Parvalbumin-Positive Interneurons Impairs Hippocampal Synchrony, Spatial Representations, and Working Memory , 2010, Neuron.

[48]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[49]  Asohan Amarasingham,et al.  Hippocampus Internally Generated Cell Assembly Sequences in the Rat , 2011 .

[50]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[51]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[52]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[54]  Alain Berthoz,et al.  Impaired Sequential Egocentric and Allocentric Memories in Forebrain-Specific–NMDA Receptor Knock-Out Mice during a New Task Dissociating Strategies of Navigation , 2006, The Journal of Neuroscience.

[55]  J. Schoffelen,et al.  Nonparametric statistical testing of coherence differences , 2007, Journal of Neuroscience Methods.

[56]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[57]  Richard Kempter,et al.  Single-Trial Phase Precession in the Hippocampus , 2009, The Journal of Neuroscience.

[58]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[59]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[60]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[61]  Edvard I Moser,et al.  A metric for space , 2008, Hippocampus.

[62]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[63]  J. Knierim,et al.  Major Dissociation Between Medial and Lateral Entorhinal Input to Dorsal Hippocampus , 2005, Science.

[64]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[65]  K. I. Blum,et al.  Impaired Hippocampal Representation of Space in CA1-Specific NMDAR1 Knockout Mice , 1996, Cell.

[66]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.