Exploitation of Image Statistics with Sparse Coding in the Case of Stereo Vision

The sparse coding algorithm has served as a model for early processing in mammalian vision. It has been assumed that the brain uses sparse coding to exploit statistical properties of the sensory stream. We hypothesize that sparse coding discovers patterns from the data set, which can be used to estimate a set of stimulus parameters by simple readout. In this study, we chose a model of stereo vision to test our hypothesis. We used the Locally Competitive Algorithm (LCA), followed by a naïve Bayes classifier, to infer stereo disparity. From the results we report three observations. First, disparity inference was successful with this naturalistic processing pipeline. Second, an expanded, highly redundant representation is required to robustly identify the input patterns. Third, the inference error can be predicted from the number of active coefficients in the LCA representation. We conclude that sparse coding can generate a suitable general representation for subsequent inference tasks.

[1]  Bernd Jähne,et al.  Signal processing and pattern recognition , 1999 .

[2]  B. Cumming,et al.  Suppressive Mechanisms in Monkey V1 Help to Solve the Stereo Correspondence Problem , 2011, The Journal of Neuroscience.

[3]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[4]  Paul B Hibbard,et al.  Distribution of independent components of binocular natural images. , 2015, Journal of vision.

[5]  Bruce Cumming,et al.  Disparity processing in primary visual cortex , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  B. Grothe,et al.  Precise inhibition is essential for microsecond interaural time difference coding , 2002, Nature.

[7]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[8]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[9]  Martin Rehn,et al.  A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields , 2007, Journal of Computational Neuroscience.

[10]  Harry Zhang,et al.  Exploring Conditions For The Optimality Of Naïve Bayes , 2005, Int. J. Pattern Recognit. Artif. Intell..

[11]  Melanie Mitchell,et al.  Sparse Coding on Stereo Video for Object Detection , 2017, ArXiv.

[12]  Varun Bhatt,et al.  Sparsity Enables Data and Energy Efficient Spiking Convolutional Neural Networks , 2018, ICANN.

[13]  D. Hand,et al.  Idiot's Bayes—Not So Stupid After All? , 2001 .

[14]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[15]  Wei Lu,et al.  Replicating Kernels with a Short Stride Allows Sparse Reconstructions with Fewer Independent Kernels , 2014, ArXiv.

[16]  Matthias Bethge,et al.  Natural Image Coding in V1: How Much Use Is Orientation Selectivity? , 2008, PLoS Comput. Biol..

[17]  Garrett T. Kenyon,et al.  Unsupervised Dictionary Learning via a Spiking Locally Competitive Algorithm , 2019, ICONS.

[18]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[19]  H. Barlow Cerebral Cortex as Model Builder , 1987 .

[20]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[21]  W. Little The existence of persistent states in the brain , 1974 .

[22]  W. Geisler,et al.  Optimal disparity estimation in natural stereo images. , 2014, Journal of vision.

[23]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  G. Poggio,et al.  Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey , 1981, The Journal of physiology.

[25]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[26]  Oleg Kupervasser,et al.  The mysterious optimality of Naive Bayes: Estimation of the probability in the system of “classifiers” , 2002, Pattern Recognition and Image Analysis.

[27]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[28]  Fleur Zeldenrust,et al.  Neural Coding With Bursts—Current State and Future Perspectives , 2018, Front. Comput. Neurosci..

[29]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Daniel J. Graham,et al.  Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? , 2006, Vision Research.

[31]  A. Torralba,et al.  Specular reflections and the perception of shape. , 2004, Journal of vision.

[32]  R. H. Hamstra,et al.  Coding properties of two classes of afferent nerve fibers: high-frequency electroreceptors in the electric fish, Eigenmannia. , 1973, Journal of neurophysiology.

[33]  K. Hoffmann,et al.  Sensitivity to relative disparity in early visual cortex of pigmented and albino ferrets , 2008, Experimental Brain Research.

[34]  Yu Zhao,et al.  Robust active binocular vision through intrinsically motivated learning , 2013, Front. Neurorobot..

[35]  Erkki Oja,et al.  Image feature extraction by sparse coding and independent component analysis , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[36]  I. Ohzawa,et al.  Neural mechanisms for encoding binocular disparity: receptive field position versus phase. , 1999, Journal of neurophysiology.

[37]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[38]  Peter Dayan,et al.  Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input , 2013, PLoS Comput. Biol..

[39]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[40]  Zhaoping Li,et al.  Efficient stereo coding in the multiscale representation , 1994 .

[41]  Tushar Chauhan,et al.  Emergence of binocular disparity selectivity through Hebbian learning , 2018 .

[42]  Hanspeter A. Mallot,et al.  Stereopsis: Geometrical and global aspects , 1999 .

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[45]  Ludmila I. Kuncheva,et al.  On the optimality of Naïve Bayes with dependent binary features , 2006, Pattern Recognit. Lett..

[46]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[47]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[48]  Thomas Brox,et al.  FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[50]  R. Shapley,et al.  Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. , 2003, Journal of neurophysiology.

[51]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[52]  Michael S. Falconbridge,et al.  A Simple Hebbian/Anti-Hebbian Network Learns the Sparse, Independent Components of Natural Images , 2006, Neural Computation.

[53]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[54]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[55]  G. Orban The extraction of 3D shape in the visual system of human and nonhuman primates. , 2011, Annual review of neuroscience.

[56]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[58]  Leon Bobrowski Induction of Linear Separability through the Ranked Layers of Binary Classifiers , 2011, EANN/AIAI.

[59]  A. Welchman,et al.  “What Not” Detectors Help the Brain See in Depth , 2017, Current Biology.

[60]  Bevil R. Conway,et al.  Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1 , 2003, Neuron.

[61]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[62]  Manuela Chessa,et al.  Descriptor : A dataset of stereoscopic images and ground-truth disparity mimicking human fi xations in peripersonal space , 2017 .

[63]  P O Hoyer,et al.  Independent component analysis applied to feature extraction from colour and stereo images , 2000, Network.

[64]  Tushar Chauhan,et al.  Emergence of Binocular Disparity Selectivity through Hebbian Learning , 2017, The Journal of Neuroscience.

[65]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[66]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[67]  Vincent Lepetit,et al.  Are sparse representations really relevant for image classification? , 2011, CVPR 2011.

[68]  M. Bethge Factorial coding of natural images: how effective are linear models in removing higher-order dependencies? , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[69]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[70]  Joel Zylberberg,et al.  Inhibitory Interneurons Decorrelate Excitatory Cells to Drive Sparse Code Formation in a Spiking Model of V1 , 2013, The Journal of Neuroscience.

[71]  Ping Tak Peter Tang,et al.  Sparse Coding by Spiking Neural Networks: Convergence Theory and Computational Results , 2017, ArXiv.

[72]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[73]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[74]  Garrett T. Kenyon,et al.  Sparse encoding of binocular images for depth inference , 2016, 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).

[75]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[76]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[77]  S. Levay,et al.  Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study , 1978, The Journal of comparative neurology.

[78]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[79]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[80]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[82]  Bruce G Cumming,et al.  Sensors for impossible stimuli may solve the stereo correspondence problem , 2007, Nature Neuroscience.

[83]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[84]  H. B. Barlow,et al.  The Limits of Counting Accuracy in Distributed Neural Representations , 2001, Neural Computation.

[85]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[86]  John Hart,et al.  Higher-Order Visual Processing , 2015 .

[87]  Francisco B. Rodríguez,et al.  Strategies to Enhance Pattern Recognition in Neural Networks Based on the Insect Olfactory System , 2018, ICANN.

[88]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[89]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[90]  Bevil R. Conway,et al.  Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. , 2015, Cerebral cortex.

[91]  Alexander S. Ecker,et al.  Population code in mouse V1 facilitates read-out of natural scenes through increased sparseness , 2014, Nature Neuroscience.

[92]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[93]  Luc Van Gool,et al.  Sparse Flow: Sparse Matching for Small to Large Displacement Optical Flow , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[94]  H. Barlow The exploitation of regularities in the environment by the brain. , 2001, The Behavioral and brain sciences.

[95]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[96]  Michael Robert DeWeese,et al.  A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields , 2011, PLoS Comput. Biol..

[97]  M. Ptito,et al.  Binocular interaction and disparity coding in area 19 of visual cortex in normal and split-chiasm cats , 2004, Experimental Brain Research.

[98]  H. Mallot,et al.  Disparity-evoked Vergence is Driven by Interocular Correlation , 1996, Vision Research.

[99]  Hanspeter A. Mallot,et al.  Sparse coding predicts optic flow specificities of zebrafish pretectal neurons , 2018, Neural Computing and Applications.

[100]  Bruno A. Olshausen,et al.  Principles of Image Representation in Visual Cortex , 2003 .

[101]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[102]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[103]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[104]  Bruce G Cumming,et al.  Delayed suppression shapes disparity selective responses in monkey V1. , 2014, Journal of neurophysiology.

[105]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[106]  Edward Kim,et al.  Deep Sparse Coding for Invariant Multimodal Halle Berry Neurons , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[107]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.