The design and control of a robot finger for tactile sensing

This article describes the design and control of a lightweight robot finger intended for tactile sensing research. The finger is a three-link planar chain with the joints actuated through cables by two motors. Kinematic coupling of the three joints provides two degrees of freedom for finger tip manipulation, and a curling action of the finger for enclosing an object. Hall effect sensors in each joint provide position feedback, and strain gage sensors on each cable provide tension information. To minimize weight and power consumption, a high speed low torque motor together with a 172:1 speed reducer is used as the actuator. A force control loop around the motor speed reducer system reduces the effect of the friction inherent in the speed reducer. Flat mounting plates are provided on each link for special purpose grasping surfaces and sensors.