Seeing via Miniature Eye Movements: A Dynamic Hypothesis for Vision

During natural viewing, the eyes are never still. Even during fixation, miniature movements of the eyes move the retinal image across tens of foveal photoreceptors. Most theories of vision implicitly assume that the visual system ignores these movements and somehow overcomes the resulting smearing. However, evidence has accumulated to indicate that fixational eye movements cannot be ignored by the visual system if fine spatial details are to be resolved. We argue that the only way the visual system can achieve its high resolution given its fixational movements is by seeing via these movements. Seeing via eye movements also eliminates the instability of the image, which would be induced by them otherwise. Here we present a hypothesis for vision, in which coarse details are spatially encoded in gaze-related coordinates, and fine spatial details are temporally encoded in relative retinal coordinates. The temporal encoding presented here achieves its highest resolution by encoding along the elongated axes of simple-cell receptive fields and not across these axes as suggested by spatial models of vision. According to our hypothesis, fine details of shape are encoded by inter-receptor temporal phases, texture by instantaneous intra-burst rates of individual receptors, and motion by inter-burst temporal frequencies. We further describe the ability of the visual system to readout the encoded information and recode it internally. We show how reading out of retinal signals can be facilitated by neuronal phase-locked loops (NPLLs), which lock to the retinal jitter; this locking enables recoding of motion information and temporal framing of shape and texture processing. A possible implementation of this locking-and-recoding process by specific thalamocortical loops is suggested. Overall it is suggested that high-acuity vision is based primarily on temporal mechanisms of the sort presented here and low-acuity vision is based primarily on spatial mechanisms.

[1]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[2]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[3]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[4]  H. K. HAltTLIn THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 2004 .

[5]  Avi Caspi,et al.  Scaling of horizontal and vertical fixational eye movements. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[7]  Ananth C Viswanathan,et al.  Exploration of the psychophysics of a motion displacement hyperacuity stimulus. , 2006, Investigative ophthalmology & visual science.

[8]  Erol Basar,et al.  Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans , 2004, Biological Cybernetics.

[9]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[10]  Miriam Zacksenhouse,et al.  Temporal Decoding by Phase-Locked Loops: Unique Features of Circuit-Level Implementations and Their Significance for Vibrissal Information Processing , 2006, Neural Computation.

[11]  Rufin VanRullen,et al.  The continuous Wagon Wheel Illusion is object-based , 2006, Vision Research.

[12]  R. L. de Valois,et al.  Responses of simple and complex cells to random dot patterns: a quantitative comparison. , 1988, Journal of neurophysiology.

[13]  H S Smallman,et al.  Fine grain of the neural representation of human spatial vision , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  G Westheimer,et al.  Temporal asynchrony interferes with vernier acuity. , 1993, Visual neuroscience.

[15]  S. McKee,et al.  Finding the common bond: Stereoacuity and the other hyperacuities , 1990, Vision Research.

[16]  D. Whitteridge Movements of the eyes R. H. S. Carpenter, Pion Ltd, London (1977), 420 pp., $27.00 , 1979, Neuroscience.

[17]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[18]  Alexander Grunewald,et al.  The Integration of Multiple Stimulus Features by V1 Neurons , 2004, The Journal of Neuroscience.

[19]  N. Qian Binocular Disparity and the Perception of Depth , 1997, Neuron.

[20]  Martina Poletti,et al.  Stability of the Visual World during Eye Drift , 2010, The Journal of Neuroscience.

[21]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[22]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[23]  A. Z. Meiri,et al.  The effects of exposure duration and luminance on the 3-dot hyperacuity task , 1984, Vision Research.

[24]  J M Enoch,et al.  The resistance of selected hyperacuity configurations to retinal image degradation. , 1984, Investigative ophthalmology & visual science.

[25]  V Virsu,et al.  Phase of responses to moving sinusoidal gratings in cells of cat retina and lateral geniculate nucleus. , 1981, Journal of neurophysiology.

[26]  G. Westheimer,et al.  Discrimination of direction of motion in human vision. , 1994, Journal of neurophysiology.

[27]  S. Butler,et al.  Alpha Rhythm and Fine Eye and Eyelid Movement , 1970, Nature.

[28]  R. Shapley,et al.  Hyperacuity in cat retinal ganglion cells. , 1986, Science.

[29]  Markus Meister,et al.  Multi-neuronal signals from the retina: acquisition and analysis , 1994, Journal of Neuroscience Methods.

[30]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[31]  D. Snodderly,et al.  Studying striate cortex neurons in behaving monkeys: Benefits of image stabilization , 1987, Vision Research.

[32]  D. Burr Motion smear , 1980, Nature.

[33]  L. Arend Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. , 1973, Psychological review.

[34]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[35]  J. G. Thomas,et al.  Three electronic methods for recording ocular tremor , 2006, Medical and biological engineering.

[36]  Floyd M. Gardner,et al.  Phaselock techniques , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  Jessica A. Cardin,et al.  Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex. , 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Meister,et al.  The Light Response of Retinal Ganglion Cells Is Truncated by a Displaced Amacrine Circuit , 1997, Neuron.

[39]  Pooya Pakarian,et al.  Wagon-Wheel Illusion under Steady Illumination: Real or Illusory? , 2003, Perception.

[40]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[41]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[42]  D. Purves,et al.  The wagon-wheel illusion in continuous light , 2005, Trends in Cognitive Sciences.

[43]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[44]  M P Stryker,et al.  Segregation of ON and OFF afferents to ferret visual cortex. , 1988, Journal of neurophysiology.

[45]  D. Kleinfeld,et al.  Adaptive Filtering of Vibrissa Input in Motor Cortex of Rat , 2002, Neuron.

[46]  D H Kelly,et al.  Motion and vision. I. Stabilized images of stationary gratings. , 1979, Journal of the Optical Society of America.

[47]  H. Sompolinsky,et al.  A Neural Computation for Visual Acuity in the Presence of Eye Movements , 2007, PLoS biology.

[48]  K. Naka,et al.  Dynamics of the ganglion cell response in the catfish and frog retinas , 1987, The Journal of general physiology.

[49]  Ralf Engbert,et al.  Microsaccades Keep the Eyes' Balance During Fixation , 2004, Psychological science.

[50]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[51]  Steinman Rm,et al.  The role of eye movement in the detection of contrast and spatial detail. , 1990 .

[52]  Josef P. Rauschecker,et al.  Cortical control of the thalamus: top-down processing and plasticity , 1998, Nature Neuroscience.

[53]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[54]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  Margaret S. Livingstone,et al.  Two-Dimensional Substructure of Stereo and Motion Interactions in Macaque Visual Cortex , 2003, Neuron.

[56]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[57]  W. Graham Richards,et al.  Art of electronics , 1983, Nature.

[58]  E Ahissar,et al.  Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. P. Moore,et al.  PACEMAKER NEURONS: EFFECTS OF REGULARLY SPACED SYNAPTIC INPUT. , 1964, Science.

[60]  D Purves,et al.  The extraordinarily rapid disappearance of entoptic images. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Lund,et al.  Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B , 1997, The Journal of comparative neurology.

[62]  S. McKee,et al.  Dichoptic hyperacuity: the precision of nonius alignment. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[63]  Michele Rucci,et al.  Fixational eye movements, natural image statistics, and fine spatial vision , 2008, Network.

[64]  Haluk Ogmen,et al.  The what and where in visual masking , 2003, Vision Research.

[65]  E Ahissar,et al.  Temporal frequency of whisker movement. I. Representations in brain stem and thalamus. , 2001, Journal of neurophysiology.

[66]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[67]  Michael A. Gresty,et al.  Minute Eye Movement and Brain Stem Function , 1984 .

[68]  David Hubel,et al.  A big step along the visual pathway , 1996, Nature.

[69]  C. Gilbert,et al.  Generation of end-inhibition in the visual cortex via interlaminar connections , 1986, Nature.

[70]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[71]  Gian F. Poggio,et al.  Mechanisms of stereopsis in monkey visual cortex , 1979, Trends in Neurosciences.

[72]  Eileen Kowler Eye movements and their role in visual and cognitive processes. , 1990, Reviews of oculomotor research.

[73]  D. Amnon Silverstein,et al.  Vernier acuity during image rotation and translation: Visual performance limits , 1995, Vision Research.

[74]  P. E. Hallett,et al.  Power spectra for ocular drift and tremor , 1985, Vision Research.

[75]  Fred H. Hamker,et al.  The spatial distribution of receptive field changes in a model of peri-saccadic perception: Predictive remapping and shifts towards the saccade target , 2010, Vision Research.

[76]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[77]  Igor Kagan,et al.  Active Vision: Fixational Eye Movements Help Seeing Space in Time , 2012, Current Biology.

[78]  Arnold Ziesche,et al.  Computational models of spatial updating in peri-saccadic perception , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , .

[80]  D. Snodderly,et al.  Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding , 2001, Visual Neuroscience.

[81]  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[82]  G. Westheimer Diffraction Theory and Visual Hyperacuity* , 1976, American journal of optometry and physiological optics.

[83]  D. Buonomano,et al.  The neural basis of temporal processing. , 2004, Annual review of neuroscience.

[84]  R C Reid,et al.  Divergence and reconvergence: multielectrode analysis of feedforward connections in the visual system. , 2001, Progress in brain research.

[85]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[86]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[87]  E. Ahissar,et al.  Motor-Sensory Confluence in Tactile Perception , 2012, The Journal of Neuroscience.

[88]  D H HUBEL,et al.  Cortical unit responses to visual stimuli in nonanesthetized cats. , 1958, American journal of ophthalmology.

[89]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[90]  Frank C. Hoppensteadt,et al.  Pattern recognition via synchronization in phase-locked loop neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[91]  S. Levay,et al.  Segregation of on- and off-center afferents in mink visual cortex. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[92]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[93]  G. Westheimer Visual acuity and hyperacuity: resolution, localization, form. , 1987, American journal of optometry and physiological optics.

[94]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[95]  K Shinosaki,et al.  Preservation of alpha rhythm shortly after photic driving. , 1993, The International journal of neuroscience.

[96]  L A RIGGS,et al.  Motions of the retinal image during fixation. , 1954, Journal of the Optical Society of America.

[97]  Adam Kepecs,et al.  Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making , 2006, Nature Reviews Neuroscience.

[98]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[99]  Bevil R. Conway,et al.  Receptive Fields of Disparity-Tuned Simple Cells in Macaque V1 , 2003, Neuron.

[100]  C. Moore Frequency-dependent processing in the vibrissa sensory system. , 2004, Journal of neurophysiology.

[101]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[102]  H. Gerrits,et al.  Differences in peripheral and foveal effects observed in stabilized vision , 1978, Experimental Brain Research.

[103]  D Kleinfeld,et al.  Anatomical loops and their electrical dynamics in relation to whisking by rat. , 1999, Somatosensory & motor research.

[104]  Nava Rubin,et al.  Segmentation in structure from motion: modeling and psychophysics , 2001, Vision Research.

[105]  H. B. Barlow,et al.  Slippage of Contact Lenses and other Artefacts in Relation to Fading and Regeneration of Supposedly Stable Retinal Images , 1963 .

[106]  S. McKee,et al.  Exposure duration affects the sensitivity of vernier acuity to target motion , 1983, Vision Research.

[107]  J J Hopfield,et al.  Encoding for computation: recognizing brief dynamical patterns by exploiting effects of weak rhythms on action-potential timing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  R. Steinman,et al.  The role of eye movement in the detection of contrast and spatial detail. , 1990, Reviews of oculomotor research.

[109]  E Ahissar,et al.  Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. J. Watt,et al.  On the failure of spatiotemporal interpolation: A filtering model , 1983, Vision Research.

[111]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[112]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[113]  L MATIN,et al.  THREE-DIMENSIONAL RECORDING OF ROTATIONAL EYE MOVEMENTS BY A NEW CONTACT-LENS TECHNIQUE. , 1964, Biomedical sciences instrumentation.

[114]  Margaret S Livingstone,et al.  End-Stopping and the Aperture Problem Two-Dimensional Motion Signals in Macaque V1 , 2003, Neuron.

[115]  D Purves,et al.  Temporal events in cyclopean vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[116]  A I Fedotchev,et al.  Stability of resonance EEG reactions to flickering light in humans. , 1990, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[117]  M. Konishi,et al.  A circuit for detection of interaural time differences in the brain stem of the barn owl , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  Thane Fremouw,et al.  Methods for the Analysis of Auditory Processing in the Brain , 2004, Annals of the New York Academy of Sciences.

[119]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[120]  G. Edelman,et al.  Modeling LGN Responses during Free-Viewing: A Possible Role of Microscopic Eye Movements in the Refinement of Cortical Orientation Selectivity , 2000, The Journal of Neuroscience.

[121]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[122]  M. Rucci,et al.  Contributions of fixational eye movements to the discrimination of briefly presented stimuli. , 2003, Journal of vision.

[123]  Jessica A. Cardin,et al.  Stimulus-Dependent γ (30-50 Hz) Oscillations in Simple and Complex Fast Rhythmic Bursting Cells in Primary Visual Cortex , 2005, The Journal of Neuroscience.

[124]  P. Lennie,et al.  Fine Structure of Parvocellular Receptive Fields in the Primate Fovea Revealed by Laser Interferometry , 2000, The Journal of Neuroscience.

[125]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Thomas Wachtler,et al.  A simple model of human foveal ganglion cell responses to hyperacuity stimuli , 1996, Journal of Computational Neuroscience.

[127]  A. Lit,et al.  Luminance-dependent visual latency for the hess effect, the pulfrich effect, and simple reaction time , 1983, Vision Research.

[128]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[129]  W. Walter,et al.  The central effects of rhythmic sensory stimulation. , 1949, Electroencephalography and clinical neurophysiology.

[130]  J. Findlay Frequency analysis of human involuntary eye movement , 1971, Kybernetik.

[131]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[132]  U. T. Keesey Effects of involuntary eye movements on visual acuity. , 1960, Journal of the Optical Society of America.

[133]  E. Basar,et al.  Sensory and cognitive components of brain resonance responses. An analysis of responsiveness in human and cat brain upon visual and auditory stimulation. , 1991, Acta oto-laryngologica. Supplementum.

[134]  G L Romani,et al.  Neuromagnetic evidence of synchronized spontaneous activity in the brain following repetitive sensory stimulation. , 1987, The International journal of neuroscience.

[135]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[136]  H. Barlow Eye movements during fixation , 1952, The Journal of physiology.

[137]  B. O'Brien,et al.  Intrinsic physiological properties of cat retinal ganglion cells , 2002, The Journal of physiology.

[138]  R. Reid,et al.  Precise Firing Events Are Conserved across Neurons , 2002, The Journal of Neuroscience.

[139]  David Williams,et al.  Blurring by fixational eye movements , 1992, Vision Research.

[140]  O. D. Creutzfeldt,et al.  Representation of complex visual stimuli in the brain , 1978, Naturwissenschaften.

[141]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[142]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[143]  J. G. Thomas,et al.  Studies on Human Ocular Tremor , 1973 .

[144]  O. Lippold,et al.  The Origin of the Alpha Rhythm , 1973 .

[145]  Ulker Tulunay-Keesey,et al.  The role of eye movements in motion detection , 1987, Vision Research.

[146]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[147]  P. Schyns,et al.  Cracking the Code of Oscillatory Activity , 2011, PLoS biology.

[148]  Merav Ahissar,et al.  Hebbian-like functional plasticity in the auditory cortex of the behaving monkey , 1998, Neuropharmacology.

[149]  B. Feige,et al.  Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. , 2005, Journal of neurophysiology.

[150]  A. R. Shakhnovich The Brain and Regulation of Eye Movement , 2012 .

[151]  S. Sutherland Eye, brain and vision , 1993, Nature.

[152]  D. Burr Acuity for apparent vernier offset , 1979, Vision Research.

[153]  R. Pritchard Stabilized images on the retina. , 1961, Scientific American.

[154]  H. B. Barlow,et al.  Reconstructing the visual image in space and time , 1979, Nature.

[155]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[156]  D. Purves,et al.  The wagon wheel illusion in movies and reality. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[157]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[158]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[159]  Olof Bryngdahl,et al.  Effect of Retinal Image Motion on Visual Acuity , 1961 .

[160]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[161]  KRAUSKOPFt Analysis of Eye Movements during Monocular and Binocular Fixation * , 2004 .

[162]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[163]  L. Riggs,et al.  Involuntary motions of the eye during monocular fixation. , 1950, Journal of experimental psychology.

[164]  F. Møller,et al.  Binocular quantification and characterization of microsaccades , 2002, Graefe’s Archive for Clinical and Experimental Ophthalmology.

[165]  Talis Bachmann,et al.  Visibility of Brief Images: The Dual-Process Approach , 1997, Consciousness and Cognition.

[166]  Thierry Bal,et al.  Sensory gating mechanisms of the thalamus , 1994, Current Opinion in Neurobiology.

[167]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[168]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[169]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[170]  D. Fender,et al.  The interplay of drifts and flicks in binocular fixation. , 1969, Vision research.

[171]  D. G. Albrecht,et al.  Motion direction signals in the primary visual cortex of cat and monkey. , 2001, Visual neuroscience.

[172]  M Zacksenhouse,et al.  Temporal and spatial coding in the rat vibrissal system. , 2001, Progress in brain research.

[173]  M. J. Morgan,et al.  Stereoscopic depth perception at high velocities , 1995, Nature.

[174]  P. Apkarian,et al.  Multiple spatial-frequency tuning of electrical responses from human visual cortex , 1978, Experimental Brain Research.

[175]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[176]  E. Izhikevich,et al.  Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? , 1998, Bio Systems.

[177]  Shaul Hochstein,et al.  Restricted ability to recover three-dimensional global motion from one-dimensional local signals: Theoretical observations , 1995, Vision Research.

[178]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[179]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[180]  Ehud Ahissar,et al.  Temporal-Code to Rate-Code Conversion by Neuronal Phase-Locked Loops , 1998, Neural Computation.

[181]  R. Eckhorn,et al.  High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey. , 1993, Neuroreport.

[182]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .