Spatial adaption of robot trajectories based on laplacian trajectory editing

Assuming that a robot trajectory is given from a high-level planning or learning mechanism, it needs to be adapted to react to dynamic environment changes. In this article we propose a novel approach to deform trajectories while keeping their local shape similar, which is based on the discrete Laplace–Beltrami operator. The approach can be readily extended and covers multiple deformation techniques including fixed waypoints that must be passed, positional constraints for collision avoidance or a cooperative manipulation scheme for the coordination of multiple robots. Due to its low computational complexity it allows for real-time trajectory deformation both on local and global scale and online adaptation to changed environmental constraints. Simulations illustrate the straightforward combination of the proposed approach with other established trajectory-related methods like artificial potential fields or prioritized inverse kinematics. Experiments with the HRP-4 humanoid successfully demonstrate the applicability in complex daily-life tasks.

[1]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[5]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[6]  Sandra Hirche,et al.  Sampling-based trajectory imitation in constrained environments using Laplacian-RRT , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Katja Mombaur,et al.  Forward and Inverse Optimal Control of Bipedal Running , 2013 .

[8]  Nicolás Montés,et al.  Real-time Bézier Trajectory Deformation for Potential Fields planning methods , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[10]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[11]  Sandra Hirche,et al.  Variable Positional Constraints for Laplacian Trajectory Editing , 2013 .

[12]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[13]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[14]  Stefan Schaal,et al.  Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance , 2009, 2009 IEEE International Conference on Robotics and Automation.

[15]  A. Hamilton,et al.  Interference effect of observed human movement on action is due to velocity profile of biological motion , 2007, Social neuroscience.

[16]  Alois Knoll,et al.  Biological movement increases acceptance of humanoid robots as human partners in motor interaction , 2011, AI & SOCIETY.

[17]  Hans-Christian Hege,et al.  Visualization and Mathematics III , 2011 .

[18]  Stefan Schaal,et al.  Robot Programming by Demonstration , 2009, Springer Handbook of Robotics.

[19]  Quang-Cuong Pham Fast Trajectory Correction for Nonholonomic Mobile Robots using Affine Transformations , 2011, Robotics: Science and Systems.

[20]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[22]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[23]  Wolfram Burgard,et al.  Robotics: Science and Systems XV , 2010 .

[24]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[25]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[26]  Yoshihiko Nakamura,et al.  A New Trajectory Deformation Algorithm Based on Affine Transformations , 2013, IEEE Transactions on Robotics.

[27]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[28]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[29]  Stefan Schaal,et al.  Learning and generalization of motor skills by learning from demonstration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  Sandra Hirche,et al.  Multiresolution Laplacian Trajectory Replanning , 2013 .

[31]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[33]  Hans-Peter Seidel,et al.  Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity , 2000, Comput. Graph. Forum.

[34]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[35]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[36]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[37]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[38]  Sergey Levine,et al.  Continuous Inverse Optimal Control with Locally Optimal Examples , 2012, ICML.

[39]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[40]  Christian Rössl,et al.  Laplacian Framework for Interactive Mesh Editing , 2005, Int. J. Shape Model..

[41]  Dongheui Lee,et al.  Incremental kinesthetic teaching of motion primitives using the motion refinement tube , 2011, Auton. Robots.

[42]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[44]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[45]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[46]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[47]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[48]  Sandra Hirche,et al.  Fast trajectory replanning using Laplacian mesh optimization , 2012, 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV).

[49]  Daniel Cohen-Or,et al.  Least-squares meshes , 2004, Proceedings Shape Modeling Applications, 2004..

[50]  S. Schaal Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics , 2006 .

[51]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[52]  R. Strichartz Analysis of the Laplacian on the Complete Riemannian Manifold , 1983 .