Stochastic neural field model of stimulus-dependent variability in cortical neurons

We use stochastic neural field theory to analyze the stimulus-dependent tuning of neural variability in ring attractor networks. We apply perturbation methods to show how the neural field equations can be reduced to a pair of stochastic nonlinear phase equations describing the stochastic wandering of spontaneously formed tuning curves or bump solutions. These equations are analyzed using a modified version of the bivariate von Mises distribution, which is well-known in the theory of circular statistics. We first consider a single ring network and derive a simple mathematical expression that accounts for the experimentally observed bimodal (or M-shaped) tuning of neural variability. We then explore the effects of inter-network coupling on stimulus-dependent variability in a pair of ring networks. These could represent populations of cells in two different layers of a cortical hypercolumn linked via vertical synaptic connections, or two different cortical hypercolumns linked by horizontal patchy connections within the same layer. We find that neural variability can be suppressed or facilitated, depending on whether the inter-network coupling is excitatory or inhibitory, and on the relative strengths and biases of the external stimuli to the two networks. These results are consistent with the general observation that increasing the mean firing rate via external stimuli or modulating drives tends to reduce neural variability.

[1]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[2]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[3]  Xiao-Jing Wang,et al.  A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability , 1998, Journal of Computational Neuroscience.

[4]  Paul C. Bressloff,et al.  Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity , 2015, PLoS Comput. Biol..

[5]  B. Connors,et al.  Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent Network Activity in Cerebral Cortex , 2015, The Journal of Neuroscience.

[6]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[7]  Zachary P. Kilpatrick,et al.  Wandering Bumps in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[8]  Joris Vangeneugden,et al.  Orientation-Tuned Surround Suppression in Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[9]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[10]  Michael J Hawken,et al.  Functional Characterization of the Extraclassical Receptive Field in Macaque V1: Contrast, Orientation, and Temporal Dynamics , 2013, The Journal of Neuroscience.

[11]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[12]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[13]  Moritz Helias,et al.  How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime , 2013, Front. Comput. Neurosci..

[14]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[15]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[16]  Zachary P. Kilpatrick,et al.  Interareal coupling reduces encoding variability in multi-area models of spatial working memory , 2013, Front. Comput. Neurosci..

[17]  Stephen Coombes,et al.  Existence and Wandering of Bumps in a Spiking Neural Network Model , 2006, SIAM J. Appl. Dyn. Syst..

[18]  L. Abbott,et al.  Stimulus-dependent suppression of chaos in recurrent neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Haim Sompolinsky,et al.  Traveling Waves and the Processing of Weakly Tuned Inputs in a Cortical Network Module , 2004, Journal of Computational Neuroscience.

[21]  Boris S. Gutkin,et al.  Multiple Bumps in a Neuronal Model of Working Memory , 2002, SIAM J. Appl. Math..

[22]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[23]  Xiao-Jing Wang,et al.  Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks , 2003, Neuron.

[24]  Rainer Engelken,et al.  Dynamical models of cortical circuits , 2014, Current Opinion in Neurobiology.

[25]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[26]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[27]  A. Pouget,et al.  Correlations and Neuronal Population Information. , 2016, Annual review of neuroscience.

[28]  E A Codling,et al.  Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters , 2005, Journal of mathematical biology.

[29]  Brent Doiron,et al.  Optimizing Working Memory with Heterogeneity of Recurrent Cortical Excitation , 2013, The Journal of Neuroscience.

[30]  P. Bressloff,et al.  The effects of noise on binocular rivalry waves: a stochastic neural field model , 2013 .

[31]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  K. Obermayer,et al.  The Role of Feedback in Shaping the Extra-Classical Receptive Field of Cortical Neurons: A Recurrent Network Model , 2006, The Journal of Neuroscience.

[33]  Klaus Obermayer,et al.  The operating regime of local computations in primary visual cortex. , 2009, Cerebral cortex.

[34]  Amy M. Ni,et al.  Learning and attention reveal a general relationship between population activity and behavior , 2018, Science.

[35]  Gustavo Deco,et al.  Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction , 2012, PLoS Comput. Biol..

[36]  D. Ferster,et al.  Feedforward Origins of Response Variability Underlying Contrast Invariant Orientation Tuning in Cat Visual Cortex , 2012, Neuron.

[37]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[38]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[39]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[40]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[41]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[42]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Haim Sompolinsky,et al.  Interactions between Intrinsic and Stimulus-Evoked Activity in Recurrent Neural Networks , 2009, 0912.3832.

[45]  Gustavo Deco,et al.  Stimulus-dependent variability and noise correlations in cortical MT neurons , 2013, Proceedings of the National Academy of Sciences.

[46]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[47]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[48]  Trichur R. Vidyasagar,et al.  Origins of feature selectivities and maps in the mammalian primary visual cortex , 2015, Trends in Neurosciences.

[49]  Jan Drugowitsch,et al.  Multiplicative and Additive Modulation of Neuronal Tuning with Population Activity Affects Encoded Information , 2016, Neuron.

[50]  J. A. Henderson,et al.  Dynamical patterns underlying response properties of cortical circuits , 2018, Journal of The Royal Society Interface.

[51]  E. Callaway,et al.  Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1 , 1998, Visual Neuroscience.

[52]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[53]  Paul C. Bressloff,et al.  An Amplitude Equation Approach to Contextual Effects in Visual Cortex , 2002, Neural Computation.

[54]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[55]  Guillaume Hennequin,et al.  The Dynamical Regime of Sensory Cortex: Stable Dynamics around a Single Stimulus-Tuned Attractor Account for Patterns of Noise Variability , 2018, Neuron.

[56]  Carson C. Chow,et al.  Stationary Bumps in Networks of Spiking Neurons , 2001, Neural Computation.

[57]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[58]  Brent Doiron,et al.  Circuit Models of Low-Dimensional Shared Variability in Cortical Networks , 2019, Neuron.

[59]  Zachary P. Kilpatrick,et al.  Synaptic mechanisms of interference in working memory , 2017, Scientific Reports.

[60]  J. Cowan,et al.  A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  Kenneth D Harris,et al.  Stochastic transitions into silence cause noise correlations in cortical circuits , 2015, Proceedings of the National Academy of Sciences.

[62]  H. N.A.,et al.  A Biased Random Walk Model for the Trajectories of Swimming Micro-organisms , 1997 .

[63]  Alessandra Angelucci,et al.  Strong Recurrent Networks Compute the Orientation Tuning of Surround Modulation in the Primate Primary Visual Cortex , 2012, The Journal of Neuroscience.

[64]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[65]  T. Frank Nonlinear Fokker-Planck Equations: Fundamentals and Applications , 2004 .

[66]  J. Cowan,et al.  SO3 symmetry breaking mechanism for orientation and spatial frequency tuning in the visual cortex. , 2002, Physical review letters.

[67]  Kevin W. Kelley,et al.  Astrocytes: The Final Frontier… , 2016, Neuron.

[68]  Adam Kohn,et al.  Correlations in V1 Are Reduced by Stimulation Outside the Receptive Field , 2014, The Journal of Neuroscience.

[69]  Judith A Hirsch,et al.  Laminar processing in the visual cortical column , 2006, Current Opinion in Neurobiology.

[70]  Bard Ermentrout,et al.  Stimulus-Driven Traveling Solutions in Continuum Neuronal Models with a General Smooth Firing Rate Function , 2010, SIAM J. Appl. Math..

[71]  Paul C. Bressloff,et al.  Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields , 2015, SIAM J. Appl. Dyn. Syst..

[72]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[73]  K. Mardia,et al.  Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data , 2007, Biometrics.

[74]  Nicholas J Priebe,et al.  Mechanisms of Orientation Selectivity in the Primary Visual Cortex. , 2016, Annual review of vision science.

[75]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[76]  A. Angelucci,et al.  Circuits and Mechanisms for Surround Modulation in Visual Cortex. , 2017, Annual review of neuroscience.

[77]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[78]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[79]  M. Carandini,et al.  Neuronal Selectivity and Local Map Structure in Visual Cortex , 2008, Neuron.

[80]  Paul C. Bressloff,et al.  A Variational Method for Analyzing Stochastic Limit Cycle Oscillators , 2017, SIAM J. Appl. Dyn. Syst..

[81]  M. Weliky,et al.  Small modulation of ongoing cortical dynamics by sensory input during natural vision , 2004, Nature.

[82]  Paul C. Bressloff,et al.  Breathing Pulses in an Excitatory Neural Network , 2004, SIAM J. Appl. Dyn. Syst..

[83]  Mriganka Sur,et al.  Synaptic Integration by V1 Neurons Depends on Location within the Orientation Map , 2002, Neuron.

[84]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[85]  J. B. Levitt,et al.  Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. , 1996, Cerebral cortex.

[86]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[87]  Brent Doiron,et al.  Balanced neural architecture and the idling brain , 2014, Front. Comput. Neurosci..

[88]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[89]  Kenneth D Miller,et al.  Canonical computations of cerebral cortex , 2016, Current Opinion in Neurobiology.

[90]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[91]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[92]  H. Kornblum,et al.  Interactive Regulation of Neuronal Development by Hippocampal Stem Cell Niche Populations , 2019, Neuron.

[93]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[94]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[95]  Paul C. Bressloff,et al.  Front Propagation in Stochastic Neural Fields , 2012, SIAM J. Appl. Dyn. Syst..

[96]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[98]  Paul C. Bressloff,et al.  Stimulus-Locked Traveling Waves and Breathers in an Excitatory Neural Network , 2005, SIAM J. Appl. Math..

[99]  James MacLaurin,et al.  A General Framework for Stochastic Traveling Waves and Patterns, with Application to Neural Field Equations , 2015, SIAM J. Appl. Dyn. Syst..

[100]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[101]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.