Interactive navigation of multiple agents in crowded environments

We present a novel approach for interactive navigation and planning of multiple agents in crowded scenes with moving obstacles. Our formulation uses a precomputed roadmap that provides macroscopic, global connectivity for wayfinding and combines it with fast and localized navigation for each agent. At runtime, each agent senses the environment independently and computes a collision-free path based on an extended "Velocity Obstacles" concept. Furthermore, our algorithm ensures that each agent exhibits no oscillatory behaviors. We have tested the performance of our algorithm in several challenging scenarios with a high density of virtual agents. In practice, the algorithm performance scales almost linearly with the number of agents and can run at interactive rates on multi-core processors.

[1]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[2]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[3]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[5]  Daniel Thalmann,et al.  Computer Animation , 1990, Computer Science Workbench.

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Mark H. Overmars,et al.  Point Location in Fat Subdivisions , 1992, Inf. Process. Lett..

[8]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[9]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[10]  Anthony Stentz,et al.  The Focussed D* Algorithm for Real-Time Replanning , 1995, IJCAI.

[11]  Soraia Raupp Musse,et al.  A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis , 1997, Computer Animation and Simulation.

[12]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[13]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[14]  Thierry Siméon,et al.  Multiple Path Coordination for Mobile Robots: A Geometric Algorithm , 1999, IJCAI.

[15]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[16]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[17]  Takashi Chikayama,et al.  Simulating the Collision Avoidance Behavior of Pedestrians , 2000 .

[18]  Scott Alan Hutchinson,et al.  Toward real-time path planning in changing environments , 2000 .

[19]  Zvi Shiller,et al.  Motion planning in dynamic environments: obstacles moving along arbitrary trajectories , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[20]  Norman I. Badler,et al.  Pedestrians: creating agent behaviors through statistical analysis of observation data , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[21]  Yasuaki Abe,et al.  Collision avoidance method for multiple autonomous mobile agents by implicit cooperation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[22]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[23]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[24]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[25]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[26]  Nancy M. Amato,et al.  Better Group Behaviors in Complex Environments using Global Roadmaps , 2002 .

[27]  Céline Loscos,et al.  Intuitive crowd behavior in dense urban environments using local laws , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[28]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[29]  Maja J. Mataric,et al.  Motion planning using dynamic roadmaps , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[30]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[31]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[32]  Thierry Siméon,et al.  A PRM-based motion planner for dynamically changing environments , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[33]  Erwin Prassler,et al.  Reflective navigation: individual behaviors and group behaviors , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[34]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[36]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[37]  D. Thalmann,et al.  A navigation graph for real-time crowd animation on multilayered and uneven terrain , 2005 .

[38]  Lucas Kovar,et al.  Fast and accurate goal-directed motion synthesis for crowds , 2005, SCA '05.

[39]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[40]  Craig W. Reynolds Big fast crowds on PS3 , 2006, Sandbox '06.

[41]  Oliver Brock,et al.  Elastic Roadmaps: Globally Task-Consistent Motion for Autonomous Mobile Manipulation in Dynamic Environments , 2006, Robotics: Science and Systems.

[42]  Carol O'Sullivan,et al.  Populating virtual environments with crowds , 2006 .

[43]  Daniel Thalmann,et al.  Populating virtual environments with crowds , 2006, VRCIA '06.

[44]  Nidhi Kalra,et al.  Replanning with RRTs , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[45]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[46]  Manfred Lau,et al.  Precomputed search trees: planning for interactive goal-driven animation , 2006, SCA '06.

[47]  G. Swaminathan Robot Motion Planning , 2006 .

[48]  Adrien Treuille,et al.  Continuum crowds , 2006, ACM Trans. Graph..

[49]  Yi Li,et al.  Motion Planning of Multiple Agents in Virtual Environments on Parallel Architectures , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[50]  Mark H. Overmars,et al.  The Corridor Map Method: Real-Time High-Quality Path Planning , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[51]  Dinesh Manocha,et al.  Reactive deformation roadmaps: motion planning of multiple robots in dynamic environments , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[53]  James J. Kuffner,et al.  Multipartite RRTs for Rapid Replanning in Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[54]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.