The Ariadne's Clew Algorithm

We present a new approach to path planning, called the "Ariadne's clew algorithm". It is designed to find paths in high-dimensional continuous spaces and applies to robots with many degrees of freedom in static, as well as dynamic environments -- ones where obstacles may move. The Ariadne's clew algorithm comprises two sub-algorithms, called SEARCH and EXPLORE, applied in an interleaved manner. EXPLORE builds a representation of the accessible space while SEARCH looks for the target. Both are posed as optimization problems. We describe a real implementation of the algorithm to plan paths for a six degrees of freedom arm in a dynamic environment where another six degrees of freedom arm is used as a moving obstacle. Experimental results show that a path is found in about one second without any pre-processing.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Rodney A. Brooks,et al.  Solving the find-path problem by good representation of free space , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  B. Faverjon,et al.  A local based approach for path planning of manipulators with a high number of degrees of freedom , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[4]  George G. Robertson,et al.  Parallel Implementation of Genetic Algorithms in a Classifier Rystem , 1987, ICGA.

[5]  John J. Grefenstette,et al.  A Parallel Genetic Algorithm , 1987, ICGA.

[6]  Reiko Tanese,et al.  Parallel Genetic Algorithms for a Hypercube , 1987, ICGA.

[7]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Yuval Davidor Analogous Crossover , 1989, ICGA.

[10]  Vincent Hayward,et al.  An Overview of KALI: a System to Program and Control Cooperative Manipulators , 1989 .

[11]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[12]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[13]  Jean-Claude Latombe,et al.  A Monte-Carlo algorithm for path planning with many degrees of freedom , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[14]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[15]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[16]  El-Ghazali Talbi,et al.  Using Genetic Algorithms for Robot Motion Planning , 1991, Geometric Reasoning for Perception and Action.

[17]  El-Ghazali Talbi,et al.  A parallel genetic algorithm for the graph partitioning problem , 1991, ICS '91.

[18]  Emanuel Falkenauer,et al.  A genetic algorithm for job shop , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[19]  Mark H. Overmars,et al.  A random approach to motion planning , 1992 .

[20]  Patrick A. O'Donnell,et al.  HANDEY: A Robot Task Planner , 1992 .

[21]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[22]  Alain Delchambre,et al.  A genetic algorithm for bin packing and line balancing , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[23]  El-Ghazali Talbi Allocation de processus sur les architectures parallèles à mémoire distribuée , 1993 .

[24]  Zbigniew Michalewicz,et al.  Evolutionary navigator for a mobile robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[25]  Kamal K. Gupta Motion planning for re-orientation using finger tracking: landmarks in SO(3)/spl times//spl omega/ , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[26]  Kamal K. Gupta,et al.  Motion planning for many degrees of freedom: sequential search with backtracking , 1995, IEEE Trans. Robotics Autom..

[27]  Kamal Guptakamal,et al.  Using Manhattan Paths for Manipulation Planning , 1995 .

[28]  Zbigniew Michalewicz,et al.  Evolutionary Planner/Navigator: operator performance and self-tuning , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[29]  Christian Laugier,et al.  Robust path planning in the plane , 1996, IEEE Trans. Robotics Autom..

[30]  El-Ghazali Talbi,et al.  UN ALGORITHME GÉNÉTIQUE PARALLÈLE POUR L'OPTIMISATION , 1996 .

[31]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[32]  El-Ghazali Talbi,et al.  A Parallel Genetic Algorithm Applied to the Mapping Problem , 1996, Applications on Advanced Architecture Computers.

[33]  Thierry Fraichard,et al.  Planning continuous-curvature paths for car-like robots , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[34]  Alistair McLean,et al.  Incremental roadmaps and global path planning in evolving industrial environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[35]  J. Latombe,et al.  Probabilistic Roadm Aps for Path Planning in High-dimensional Connguration Spaces , 1997 .

[36]  Thierry Fraichard,et al.  Continuous-curvature path planning for car-like vehicles , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[37]  Kamal K. Gupta,et al.  Manipulation Planning for Redundant Robots: A Practical Approach , 1998, Int. J. Robotics Res..

[38]  Tomas Lozano-Perez,et al.  A simple motion-planning algorithm for general robot manipulators , 1986, IEEE J. Robotics Autom..