Evolutionary online behaviour learning and adaptation in robotic systems

In this thesis, we study new ways to enable efficient online learning in autonomous robots. We employ a control synthesis methodology called evolutionary robotics, which emerged in the 1990s as a promising alternative to classic artificial intelligence techniques and design methodologies for control systems. In online learning through evolution, henceforth called online evolution, an evolutionary algorithm is executed onboard each robot in order to create and continuously optimise its behavioural control logic. Each instance of the evolutionary algorithm executes without any external supervision or human intervention. Online evolution can thus automatically generate the artificial intelligence that controls each robot, and creates the potential for long-term behaviour adaptation and learning: robots can continuously self-adjust and learn new behaviours in response to, for example, changes in the task requirements or environmental conditions, and to faults in the sensors and/or actuators. Despite the potential for automatic behaviour learning, online evolution is not frequently employed for a number of reasons. First, online evolution typically requires several hours or days to synthesise solutions to a task. As a result, the approach has not yet been practically exploited in real-robot systems. Second, one common assumption in the field is that online evolution enables continuous learning and adaptation to previously unforeseen circumstances. However, only a small number of ad-hoc experiments have been carried out in simulation. That is, the potential for online evolution to enable dynamic adaptation and learning has been largely left unstudied. The main goal of this thesis is to address some of the fundamental issues associated with online evolution to bring it closer to widespread adoption. Our research focuses on studying if and how to accelerate and increase the performance of online evolution. Our first research contribution is a comprehensive presentation and analysis of Online Decentralised NeuroEvolution of Augmenting Topologies (odNEAT), an algorithm for online evolution of neural networkbased controllers in multirobot systems. odNEAT differs from more traditional approaches to online evolution because both the weighting parameters and the topological structure of neural networks are under evolutionary control. Our second research contribution focuses on investigating the dynamics of online evolution of controllers at two different levels. At the microscopic scale, we assess the dynamics of distinct neuronal models. At the macroscopic scale, we investigate the scalability properties of online evolution with respect to group size. The outcomes of the contribution are an assertion of the critical role of the controller evaluation policy, and an analysis of how the group size influences task performance. In our third research contribution, we capitalise on the knowledge gained from the second study, and we introduce: (i) a racing approach that allows individual robots to cut short the evaluation of poor controllers, (ii) a population cloning approach that enables each individual robot to clone and transmit a varying number of high-performing controllers to other robots nearby, and (iii) online hyper-evolution (OHE), an unprecedented approach in evolutionary robotics with the capability to automatically construct algorithms for controller generation during task execution. To conclude, we validate our research in real robotic hardware, and we successfully demonstrate evolution of controllers to solve three classic evolutionary robotics tasks in a timely manner (one hour or less).

[1]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[2]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[3]  Anders Lyhne Christensen,et al.  Open Issues in Evolutionary Robotics , 2016, Evolutionary Computation.

[4]  Inman Harvey,et al.  Evolutionary robotics: the Sussex approach , 1997, Robotics Auton. Syst..

[5]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[6]  Gary J. Koehler,et al.  New stopping criterion for genetic algorithms , 2000, Eur. J. Oper. Res..

[7]  Sebastian Risi,et al.  A unified approach to evolving plasticity and neural geometry , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[8]  Corso Elvezia,et al.  Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability , 1997 .

[9]  Dario Floreano,et al.  Analog Genetic Encoding for the Evolution of Circuits and Networks , 2007, IEEE Transactions on Evolutionary Computation.

[10]  Stefano Nolfi,et al.  Evolving coordinated group behaviours through maximisation of mean mutual information , 2008, Swarm Intelligence.

[11]  A. E. Eiben,et al.  MONEE: Using Parental Investment to Combine Open-Ended and Task-Driven Evolution , 2013, EvoApplications.

[12]  Joachim Wegener,et al.  On termination criteria of evolutionary algorithms , 2001 .

[13]  D.B. Fogel,et al.  Nils Barricelli - artificial life, coevolution, self-adaptation , 2006, IEEE Computational Intelligence Magazine.

[14]  Anders Lyhne Christensen,et al.  R-HybrID: Evolution of Agent Controllers with a Hybrisation of Indirect and Direct Encodings , 2015, AAMAS.

[15]  J. Cohen,et al.  Schizophrenic deficits in the processing of context. A test of a theoretical model. , 1996, Archives of general psychiatry.

[16]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[17]  Anders Lyhne Christensen,et al.  Evolutionary online behaviour learning and adaptation in real robots , 2017, Royal Society Open Science.

[18]  A. E. Eiben,et al.  Racing to improve on-line, on-board evolutionary robotics , 2011, GECCO '11.

[19]  J. Lehman EVOLUTION THROUGH THE SEARCH FOR NOVELTY , 2012 .

[20]  Sebastian Risi,et al.  Single-unit pattern generators for quadruped locomotion , 2013, GECCO '13.

[21]  Charles Ofria,et al.  Evolving artificial neural networks with generative encodings inspired by developmental biology , 2010 .

[22]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[23]  Anders Lyhne Christensen,et al.  The Case for Engineering the Evolution of Robot Controllers , 2014, ALIFE.

[24]  Anders Lyhne Christensen,et al.  Leveraging Online Racing and Population Cloning in Evolutionary Multirobot Systems , 2016, EvoApplications.

[25]  Robin R. Murphy,et al.  Follow-up analysis of mobile robot failures , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[26]  Hod Lipson,et al.  Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization , 2011, ECAL.

[27]  Anders Lyhne Christensen,et al.  Modelling Synchronisation in Multirobot Systems with Cellular Automata: Analysis of Update Methods and Topology Perturbations , 2015 .

[28]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[29]  Dario Floreano,et al.  From Wheels to Wings with Evolutionary Spiking Circuits , 2003, EPIA.

[30]  G. Miller,et al.  Artificial Evolution: A New Path for Artificial Intelligence? , 1997, Brain and Cognition.

[31]  Anders Lyhne Christensen,et al.  Evolutionary online learning in multirobot systems , 2017, SIGAI.

[32]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[33]  Inman Harvey,et al.  Evolutionary Robotics: A New Scientific Tool for Studying Cognition , 2005, Artificial Life.

[34]  Randall D. Beer,et al.  Genotype Reuse More Important than Genotype Size in Evolvability of Embodied Neural Networks , 2007, ECAL.

[35]  Evert Haasdijk,et al.  Controlling Task Distribution in MONEE , 2013, ECAL.

[36]  Kenneth O. Stanley,et al.  A Case Study on the Critical Role of Geometric Regularity in Machine Learning , 2008, AAAI.

[37]  Jordan B. Pollack,et al.  Embodied Evolution: Distributing an evolutionary algorithm in a population of robots , 2002, Robotics Auton. Syst..

[38]  Anders Lyhne Christensen,et al.  odNEAT: An Algorithm for Decentralised Online Evolution of Robotic Controllers , 2015, Evolutionary Computation.

[39]  Marco Dorigo,et al.  Towards group transport by swarms of robots , 2009, Int. J. Bio Inspired Comput..

[40]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[41]  W. Oechel,et al.  Automatic design and manufacture of robotic lifeforms , 2022 .

[42]  David E. Rumelhart,et al.  Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.

[43]  Kenneth O. Stanley,et al.  Exploiting Open-Endedness to Solve Problems Through the Search for Novelty , 2008, ALIFE.

[44]  Jean-Baptiste Mouret,et al.  Evolvability signatures of generative encodings: Beyond standard performance benchmarks , 2014, Inf. Sci..

[45]  P. Pandurang Nayak,et al.  Remote Agent: To Boldly Go Where No AI System Has Gone Before , 1998, Artif. Intell..

[46]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[47]  Florian Schlachter,et al.  Online Evolution in Dynamic Environments using Neural Networks in Autonomous Robots , 2012 .

[48]  Kenneth O. Stanley,et al.  HyperNEAT: The First Five Years , 2014, Growing Adaptive Machines.

[49]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[50]  Antoine Cully,et al.  Evolving a Behavioral Repertoire for a Walking Robot , 2013, Evolutionary Computation.

[51]  Inman Harvey,et al.  Issues in evolutionary robotics , 1993 .

[52]  A. E. Eiben,et al.  On-Line, On-Board Evolution of Robot Controllers , 2009, Artificial Evolution.

[53]  P. Katz Beyond neurotransmission : neuromodulation and its importance for information processing , 1999 .

[54]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[55]  Stéphane Doncieux,et al.  With a little help from selection pressures: evolution of memory in robot controllers , 2012, ALIFE.

[56]  Hong Zhang,et al.  Collective Robotics: From Social Insects to Robots , 1993, Adapt. Behav..

[57]  Dario Floreano,et al.  Levels of dynamics and adaptive behavior in evolutionary neural controllers , 2002 .

[58]  Peter Ross,et al.  Constructive hyper-heuristics in class timetabling , 2005, 2005 IEEE Congress on Evolutionary Computation.

[59]  Richard J. Duro,et al.  Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time , 2010, Robotics Auton. Syst..

[60]  Anders Lyhne Christensen,et al.  odNEAT: An Algorithm for Distributed Online, Onboard Evolution of Robot Behaviours , 2012, ALIFE.

[61]  Shimon Whiteson,et al.  Critical factors in the performance of novelty search , 2011, GECCO '11.

[62]  Jean-Baptiste Mouret,et al.  Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills , 2015, PLoS Comput. Biol..

[63]  B. Gates A robot in every home. , 2007, Scientific American.

[64]  Heather Goldsby,et al.  Automatically discovering properties that specify the latent behavior of UML models , 2010, MODELS'10.

[65]  Luis Magdalena,et al.  An Open Localization and Local Communication Embodied Sensor , 2008, Sensors.

[66]  Josef Kittler,et al.  A new approach to feature selection based on the Karhunen-Loeve expansion , 1973, Pattern Recognit..

[67]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[68]  D. McFarland,et al.  Intelligent behavior in animals and robots , 1993 .

[69]  Jean-Marc Montanier,et al.  Environment-driven Distributed Evolutionary Adaptation for Collective Robotic Systems. (Evolution Artificielle pour la Robotique Collective en Environnement Ouvert) , 2013 .

[70]  Kenneth O. Stanley,et al.  Novelty Search and the Problem with Objectives , 2011 .

[71]  Dario Floreano,et al.  Evolutionary robots with on-line self-organization and behavioral fitness , 2000, Neural Networks.

[72]  Daniele Nardi,et al.  Multirobot systems: a classification focused on coordination , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[73]  Luca Maria Gambardella,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Swarm-Bot: A New Distributed Robotic Concept , 2022 .

[74]  James G Bellingham,et al.  Robotics in Remote and Hostile Environments , 2007, Science.

[75]  Marco Dorigo,et al.  From Fireflies to Fault-Tolerant Swarms of Robots , 2009, IEEE Transactions on Evolutionary Computation.

[76]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[77]  Kenneth O. Stanley,et al.  Evolving a diversity of virtual creatures through novelty search and local competition , 2011, GECCO '11.

[78]  Leonardo Trujillo,et al.  Searching for novel clustering programs , 2013, GECCO '13.

[79]  Stéphane Doncieux,et al.  Beyond black-box optimization: a review of selective pressures for evolutionary robotics , 2014, Evol. Intell..

[80]  D. Floreano,et al.  Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection , 2010, PLoS biology.

[81]  Gerald Sommer,et al.  Efficient Learning of Neural Networks with Evolutionary Algorithms , 2007, DAGM-Symposium.

[82]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[83]  Alex Fukunaga,et al.  Cooperative mobile robotics: antecedents and directions , 1995 .

[84]  Julian Togelius,et al.  Enhancements to constrained novelty search: two-population novelty search for generating game content , 2013, GECCO '13.

[85]  Jordan B. Pollack,et al.  Embodied evolution: embodying an evolutionary algorithm in a population of robots , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[86]  Maja J. Matarić,et al.  Behavior-Based Coordination in Multi-Robot Systems , 2018, Autonomous Mobile Robots.

[87]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[88]  D. Floreano,et al.  Synthesis of autonomous robots through evolution , 2002, Trends in Cognitive Sciences.

[89]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 1996, Machine Learning.

[90]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[91]  Thomas Schmickl,et al.  Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics , 2011, GECCO '11.

[92]  Jean-Baptiste Mouret,et al.  Illuminating search spaces by mapping elites , 2015, ArXiv.

[93]  Andries Petrus Engelbrecht,et al.  Investigating the use of local search for improving meta-hyper-heuristic performance , 2012, 2012 IEEE Congress on Evolutionary Computation.

[94]  Florentin Wörgötter,et al.  Embodied Evolution and Learning: The Neglected Timing of Maturation , 2007, ECAL.

[95]  Mark B. Ring Continual learning in reinforcement environments , 1995, GMD-Bericht.

[96]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[97]  Susana Sargento,et al.  Design of Communication and Control for Swarms of Aquatic Surface Drones , 2015, ICAART.

[98]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[99]  Philippe Capdepuy,et al.  Maximization of Potential Information Flow as a Universal Utility for Collective Behaviour , 2007, 2007 IEEE Symposium on Artificial Life.

[100]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[101]  Stefano Nolfi,et al.  Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce , 2004, Connect. Sci..

[102]  Pierre-Yves Oudeyer,et al.  Intrinsic Motivation Systems for Autonomous Mental Development , 2007, IEEE Transactions on Evolutionary Computation.

[103]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[104]  Tariq Samad,et al.  Towards the Genetic Synthesisof Neural Networks , 1989, ICGA.

[105]  Stéphane Doncieux,et al.  The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics , 2013, IEEE Transactions on Evolutionary Computation.

[106]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[107]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[108]  Daniel P. F. Sturdy,et al.  The connectivity of the brain: multi-level quantitative analysis , 1995, Biological Cybernetics.

[109]  Joel Lehman,et al.  Encouraging reactivity to create robust machines , 2013, Adapt. Behav..

[110]  Risto Miikkulainen,et al.  Robust non-linear control through neuroevolution , 2003 .

[111]  Heiko Hamann,et al.  Impact of neuron models and network structure on evolving modular robot neural network controllers , 2012, GECCO '12.

[112]  Frédéric Gruau,et al.  Genetic synthesis of Boolean neural networks with a cell rewriting developmental process , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[113]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[114]  Wolfgang Banzhaf,et al.  Empirical analysis of different levels of meta-evolution , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[115]  Kenneth O. Stanley,et al.  Confronting the Challenge of Quality Diversity , 2015, GECCO.

[116]  Anders Lyhne Christensen,et al.  A Case Study on the Scalability of Online Evolution of Robotic Controllers , 2015, EPIA.

[117]  Stefano Nolfi,et al.  Evolving mobile robots in simulated and real environments , 1995 .

[118]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[119]  Vincent Padois,et al.  Evolutionary Robotics: Exploring New Horizons , 2011 .

[120]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[121]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[122]  G. Hommel A stagewise rejective multiple test procedure based on a modified Bonferroni test , 1988 .

[123]  Sebastian Risi,et al.  An Enhanced Hypercube-Based Encoding for Evolving the Placement, Density, and Connectivity of Neurons , 2012, Artificial Life.

[124]  Dave Cliff,et al.  Challenges in evolving controllers for physical robots , 1996, Robotics Auton. Syst..

[125]  A. E. Eiben,et al.  Embodied, On-line, On-board Evolution for Autonomous Robotics , 2010 .

[126]  Joel Lehman,et al.  Evolving policy geometry for scalable multiagent learning , 2010, AAMAS.

[127]  Kenneth O. Stanley,et al.  Quality Diversity: A New Frontier for Evolutionary Computation , 2016, Front. Robot. AI.

[128]  Lincoln Smith,et al.  Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[129]  Richard E. Blakesley,et al.  PARAMETRIC CONTROL OF FAMILYWISE ERROR RATES WITH DEPENDENT P-VALUES , 2008 .

[130]  David H. Wolpert,et al.  Coevolutionary free lunches , 2005, IEEE Transactions on Evolutionary Computation.

[131]  Kenneth O. Stanley,et al.  Revising the evolutionary computation abstraction: minimal criteria novelty search , 2010, GECCO '10.

[132]  Joel Lehman,et al.  Overcoming deception in evolution of cognitive behaviors , 2014, GECCO.

[133]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[134]  Kenneth O. Stanley,et al.  A novel generative encoding for exploiting neural network sensor and output geometry , 2007, GECCO '07.

[135]  Juan Julián Merelo Guervós,et al.  Testing Diversity-Enhancing Migration Policies for Hybrid On-Line Evolution of Robot Controllers , 2012, EvoApplications.

[136]  Cesare Rossi,et al.  Automata (Towards Automation and Robots) , 2017 .

[137]  Erol Sahin,et al.  Evolving aggregation behaviors for swarm robotic systems: a systematic case study , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[138]  Anders Lyhne Christensen,et al.  Dynamics of Neuronal Models in Online Neuroevolution of Robotic Controllers , 2013, EPIA.

[139]  Dante Augusto Couto Barone,et al.  Predation: an approach to improving the evolution of real robots with a distributed evolutionary controller , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[140]  Xiaodong Li,et al.  A Comparative Study of CMA-ES on Large Scale Global Optimisation , 2010, Australasian Conference on Artificial Intelligence.

[141]  Risto Miikkulainen,et al.  Evolving Reusable Neural Modules , 2004, GECCO.

[142]  Michael Schmitt,et al.  On the Complexity of Computing and Learning with Multiplicative Neural Networks , 2002, Neural Computation.

[143]  D. Floreano,et al.  Evolutionary Robotics: The Biology,Intelligence,and Technology , 2000 .

[144]  Chrystopher L. Nehaniv,et al.  Empowerment: a universal agent-centric measure of control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[145]  Mark Elling Rosheim,et al.  Leonardo's lost robots , 2006 .

[146]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[147]  Kenneth A. De Jong,et al.  Evolving Complex Structures via Cooperative Coevolution , 1995, Evolutionary Programming.

[148]  Anders Lyhne Christensen,et al.  Hyper-Learning Algorithms for Online Evolution of Robot Controllers , 2017, ACM Trans. Auton. Adapt. Syst..

[149]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[150]  A. E. Eiben,et al.  An algorithm for distributed on-line, on-board evolutionary robotics , 2011, GECCO '11.

[151]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[152]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[153]  Kenneth O. Stanley,et al.  Scalable multiagent learning through indirect encoding of policy geometry , 2013, Evol. Intell..

[154]  Sebastian Risi,et al.  Towards Evolving More Brain-Like Artificial Neural Networks , 2012 .

[155]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[156]  J. Miller,et al.  A Review of Hyper-Heuristic Frameworks , 2014 .

[157]  Nick Jakobi,et al.  Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis , 1997, Adapt. Behav..

[158]  Jean-Baptiste Mouret Novelty-Based Multiobjectivization , 2011 .

[159]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .

[160]  Inman Harvey,et al.  Evolutionary Robotics: A Survey of Applications and Problems , 1998, EvoRobot.

[161]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[162]  Antoine Cully,et al.  Behavioral repertoire learning in robotics , 2013, GECCO '13.

[163]  Peter J. Bentley,et al.  Three Ways to Grow Designs: A Comparison of Evolved Embryogenies for a Design Problem , 1999 .

[164]  Chrystopher L. Nehaniv,et al.  All Else Being Equal Be Empowered , 2005, ECAL.

[165]  Marcus Gallagher,et al.  Combining Meta-EAs and Racing for Difficult EA Parameter Tuning Tasks , 2007, Parameter Setting in Evolutionary Algorithms.

[166]  J. S. F. Barker,et al.  Simulation of Genetic Systems by Automatic Digital Computers , 1958 .

[167]  Anders Lyhne Christensen,et al.  Progressive Minimal Criteria Novelty Search , 2012, IBERAMIA.

[168]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[169]  Wenguo Liu,et al.  Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents , 2012 .

[170]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation (3rd Edition) , 2007 .

[171]  Risto Miikkulainen,et al.  Real-time neuroevolution in the NERO video game , 2005, IEEE Transactions on Evolutionary Computation.

[172]  Nicolas Bredeche,et al.  Embedded Evolutionary Robotics: The (1+1)-Restart-Online Adaptation Algorithm , 2011 .

[173]  A. E. Eiben,et al.  Self-Adaptive Mutation in On-line, On-board Evolutionary Robotics , 2010, 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshop.

[174]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[175]  Tom Schaul,et al.  Curiosity-driven optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[176]  Francesco Mondada,et al.  The e-puck, a Robot Designed for Education in Engineering , 2009 .

[177]  Thomas Schmickl,et al.  Open-ended on-board Evolutionary Robotics for robot swarms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[178]  Risto Miikkulainen,et al.  Efficient evolution of neural networks through complexification , 2004 .

[179]  Kenneth O. Stanley,et al.  On the Performance of Indirect Encoding Across the Continuum of Regularity , 2011, IEEE Transactions on Evolutionary Computation.

[180]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[181]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[182]  Junku Yuh,et al.  The Status of Robotics , 2007, IEEE Robotics & Automation Magazine.

[183]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[184]  Nils Aall Barricelli,et al.  Numerical testing of evolution theories , 1963 .

[185]  Josh C. Bongard,et al.  Evolutionary robotics , 2013, CACM.

[186]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[187]  Risto Miikkulainen,et al.  Effective diversity maintenance in deceptive domains , 2013, GECCO '13.

[188]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[189]  Randall D. Beer,et al.  Integrating reactive, sequential, and learning behavior using dynamical neural networks , 1994 .

[190]  Eytan Ruppin,et al.  Spikes that count: rethinking spikiness in neurally embedded systems , 2004, Neurocomputing.

[191]  Stefano Nolfi,et al.  Evolutionary Robotics: Exploiting the Full Power of Self-organization , 1998, Connect. Sci..

[192]  C. Southan Has the yo‐yo stopped? An assessment of human protein‐coding gene number , 2004, Proteomics.

[193]  Florentin Wörgötter,et al.  Strongly Improved Stability and Faster Convergence of Temporal Sequence Learning by Using Input Correlations Only , 2006, Neural Computation.

[194]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[195]  N. Stander,et al.  A non‐dominance‐based online stopping criterion for multi‐objective evolutionary algorithms , 2010 .

[196]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[197]  Anders Lyhne Christensen,et al.  Speeding Up Online Evolution of Robotic Controllers with Macro-neurons , 2014, EvoApplications.

[198]  Egbert J. W. Boers,et al.  Biological metaphors and the design of modular artificial neural networks , 2010 .

[199]  Anders Lyhne Christensen,et al.  JBotEvolver: A versatile simulation platform for evolutionary robotics , 2014 .

[200]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[201]  A. E. Eiben,et al.  An On-Line On-Board Distributed Algorithm for Evolutionary Robotics , 2011, Artificial Evolution.

[202]  Riccardo Poli,et al.  Theoretical results in genetic programming: the next ten years? , 2010, Genetic Programming and Evolvable Machines.

[203]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[204]  Faustino J. Gomez,et al.  When Novelty Is Not Enough , 2011, EvoApplications.

[205]  Silvio A. Bedini,et al.  The Role of Automata in the History of Technology , 1964 .

[206]  Francesco Mondada,et al.  Evolution of neural control structures: some experiments on mobile robots , 1995, Robotics Auton. Syst..

[207]  Anders Lyhne Christensen,et al.  Generic behaviour similarity measures for evolutionary swarm robotics , 2013, GECCO '13.

[208]  Risto Miikkulainen,et al.  Automatic feature selection in neuroevolution , 2005, GECCO '05.

[209]  Wolfgang Banzhaf,et al.  A Genetic Programming Approach to the Generation of Hyper-Heuristics for the Uncapacitated Examination Timetabling Problem , 2007, EPIA Workshops.

[210]  C. Lee Giles,et al.  How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies , 1998, Neural Networks.

[211]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[212]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[213]  Anders Lyhne Christensen,et al.  Engineering Online Evolution of Robot Behaviour: (Doctoral Consortium) , 2015, AAMAS.

[214]  Rodney A. Brooks,et al.  Artificial Life and Real Robots , 1992 .

[215]  Hishammuddin Asmuni,et al.  Fuzzy Multiple Heuristic Orderings for Examination Timetabling , 2004, PATAT.

[216]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[217]  Yong-Hyuk Kim,et al.  New Usage of Sammon's Mapping for Genetic Visualization , 2003, GECCO.

[218]  Stéphane Doncieux,et al.  Using behavioral exploration objectives to solve deceptive problems in neuro-evolution , 2009, GECCO.

[219]  Anders Lyhne Christensen,et al.  Online Hyper-evolution of Controllers in Multirobot Systems , 2016, 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO).

[220]  Juan Julián Merelo Guervós,et al.  EvAg: a scalable peer-to-peer evolutionary algorithm , 2010, Genetic Programming and Evolvable Machines.

[221]  S. Gould The Structure of Evolutionary Theory , 2002 .

[222]  Mikhail Prokopenko,et al.  Evolving Spatiotemporal Coordination in a Modular Robotic System , 2006, SAB.

[223]  E. Kandel,et al.  Is Heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory , 2000, Nature Reviews Neuroscience.

[224]  Rodney A. Brooks,et al.  Real Robots, Real Learning Problems , 1993 .

[225]  Gerald Sommer,et al.  Efficient reinforcement learning through Evolutionary Acquisition of Neural Topologies , 2005, ESANN.

[226]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[227]  A. E. Eiben,et al.  On-line evolution of robot controllers by an encapsulated evolution strategy , 2010, IEEE Congress on Evolutionary Computation.

[228]  Andrew H. Fagg,et al.  Genetic programming approach to the construction of a neural network for control of a walking robot , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[229]  Sanaz Mostaghim,et al.  Decentralized evolution of robotic behavior using finite state machines , 2009, Int. J. Intell. Comput. Cybern..