Face Representations via Tensorfaces of Various Complexities

Neurons selective for faces exist in humans and monkeys. However, characteristics of face cell receptive fields are poorly understood. In this theoretical study, we explore the effects of complexity, defined as algorithmic information (Kolmogorov complexity) and logical depth, on possible ways that face cells may be organized. We use tensor decompositions to decompose faces into a set of components, called tensorfaces, and their associated weights, which can be interpreted as model face cells and their firing rates. These tensorfaces form a high-dimensional representation space in which each tensorface forms an axis of the space. A distinctive feature of the decomposition algorithm is the ability to specify tensorface complexity. We found that low-complexity tensorfaces have blob-like appearances crudely approximating faces, while high-complexity tensorfaces appear clearly face-like. Low-complexity tensorfaces require a larger population to reach a criterion face reconstruction error than medium- or high-complexity tensorfaces, and thus are inefficient by that criterion. Low-complexity tensorfaces, however, generalize better when representing statistically novel faces, which are faces falling beyond the distribution of face description parameters found in the tensorface training set. The degree to which face representations are parts based or global forms a continuum as a function of tensorface complexity, with low and medium tensorfaces being more parts based. Given the computational load imposed in creating high-complexity face cells (in the form of algorithmic information and logical depth) and in the absence of a compelling advantage to using high-complexity cells, we suggest face representations consist of a mixture of low- and medium-complexity face cells.

[1]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .

[2]  Bevil R. Conway,et al.  Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex , 2013, Nature Neuroscience.

[3]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[4]  Jacob Feldman,et al.  The simplicity principle in perception and cognition. , 2016, Wiley interdisciplinary reviews. Cognitive science.

[5]  Doris Y. Tsao,et al.  The Macaque Face Patch System: A Window into Object Representation. , 2014, Cold Spring Harbor symposia on quantitative biology.

[6]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.

[7]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[8]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[9]  XIJING GUO,et al.  Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[10]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[11]  Keiji Tanaka,et al.  Statistics of visual responses in primate inferotemporal cortex to object stimuli. , 2011, Journal of neurophysiology.

[12]  N. Chater,et al.  Simplicity: a unifying principle in cognitive science? , 2003, Trends in Cognitive Sciences.

[13]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[14]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[15]  Jean-Paul Delahaye,et al.  Image characterization and classification by physical complexity , 2010, Complex..

[16]  Marian Stewart Bartlett,et al.  Independent components of face images : A representation for face recognition , 1997 .

[17]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[18]  Bevil R. Conway,et al.  Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques , 2016, The Journal of Neuroscience.

[19]  C. Loan The ubiquitous Kronecker product , 2000 .

[20]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[21]  Doris Y. Tsao,et al.  What's so special about the average face? , 2006, Trends in Cognitive Sciences.

[22]  Carlo Baldassi,et al.  Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons , 2013, PLoS Comput. Biol..

[23]  Stefania Bracci,et al.  Dissociations and associations between shape and category representations in the two visual pathways. , 2015, Journal of vision.

[24]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[25]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[26]  Lawrence Sirovich,et al.  On the Dimensionality of Face Space , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[28]  M. Hasselmo,et al.  The responses of neurons in the cortex in the superior temporal sulcus of the monkey to band-pass spatial frequency filtered faces , 1987, Vision Research.

[29]  Timothy F. Cootes,et al.  Face Recognition Using Active Appearance Models , 1998, ECCV.

[30]  Giulio Ruffini Lempel-Zip Complexity Reference , 2017, ArXiv.

[31]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[32]  Stephan Günnemann,et al.  Introduction to Tensor Decompositions and their Applications in Machine Learning , 2017, ArXiv.

[33]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[34]  J. Winslow,et al.  Recognizing facial cues: individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). , 2000, Journal of comparative psychology.

[35]  J. S. Guntupalli,et al.  The Representation of Biological Classes in the Human Brain , 2012, The Journal of Neuroscience.

[36]  Manabu Tanifuji,et al.  Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. , 2006, Journal of neurophysiology.

[37]  D. Maurer,et al.  The many faces of configural processing , 2002, Trends in Cognitive Sciences.

[38]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[39]  James W Tanaka,et al.  The “Parts and Wholes” of Face Recognition: A Review of the Literature , 2016, Quarterly journal of experimental psychology.

[40]  M. Harries,et al.  Viewer-centred and object-centred coding of heads in the macaque temporal cortex , 2004, Experimental Brain Research.

[41]  N. Kanwisher,et al.  Face perception: domain specific, not process specific. , 2004, Neuron.

[42]  M. Ito,et al.  Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. , 1994, Cerebral cortex.

[43]  Yong Man Ro,et al.  Color Face Recognition for Degraded Face Images , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Yunde Jia,et al.  Non-negative matrix factorization framework for face recognition , 2005, Int. J. Pattern Recognit. Artif. Intell..

[45]  W. Freiwald,et al.  Face Processing Systems: From Neurons to Real-World Social Perception. , 2016, Annual review of neuroscience.

[46]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[47]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[48]  Matthew H Tong,et al.  Why is the fusiform face area recruited for novel categories of expertise? A neurocomputational investigation , 2008, Brain Research.

[49]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[50]  Garrison W. Cottrell,et al.  What Evidence Supports Special Processing for Faces? A Cautionary Tale for fMRI Interpretation , 2013, Journal of Cognitive Neuroscience.

[51]  Isabel Gauthier,et al.  Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration , 2016, Journal of Cognitive Neuroscience.

[52]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[53]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[54]  G. Rhodes,et al.  A comparative view of face perception. , 2010, Journal of comparative psychology.

[55]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[56]  Frank Plastria,et al.  Dimensionality Reduction for Classification , 2008, ADMA.

[57]  D. Plaut,et al.  Face-Space Architectures , 2013, Psychological science.

[58]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[59]  Jennifer J. Richler,et al.  Meanings, Mechanisms, and Measures of Holistic Processing , 2012, Front. Psychology.

[60]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[61]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[62]  Pieter W. Adriaans Learning as Data Compression , 2007, CiE.

[63]  N. Kanwisher,et al.  Can generic expertise explain special processing for faces? , 2007, Trends in Cognitive Sciences.

[64]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[65]  B. Willmore,et al.  Sparse coding in striate and extrastriate visual cortex. , 2011, Journal of neurophysiology.

[66]  Alice J. O'Toole,et al.  Dissociable Neural Patterns of Facial Identity across Changes in Viewpoint , 2010, Journal of Cognitive Neuroscience.

[67]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[68]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[69]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[70]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[71]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[73]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[74]  Hideyuki Câteau,et al.  Searching for visual features that explain response variance of face neurons in inferior temporal cortex , 2018, PloS one.

[75]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[76]  L. Parr,et al.  Face Processing in the Chimpanzee Brain , 2009, Current Biology.

[77]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[78]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[79]  Ichiro Fujita,et al.  Reference Frames for Spatial Frequency in Face Representation Differ in the Temporal Visual Cortex and Amygdala , 2011, The Journal of Neuroscience.

[80]  F. Fang,et al.  Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. , 2007, Cerebral cortex.

[81]  Bevil R. Conway,et al.  Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex) , 2016, eNeuro.

[82]  Shuangzhe Liu,et al.  Hadamard, Khatri-Rao, Kronecker and Other Matrix Products , 2008 .

[83]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[84]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[85]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[87]  M. Tarr,et al.  Can Face Recognition Really be Dissociated from Object Recognition? , 1999, Journal of Cognitive Neuroscience.

[88]  Doris Y. Tsao,et al.  The Code for Facial Identity in the Primate Brain , 2017, Cell.

[89]  Sidney R. Lehky,et al.  Dimensionality of Object Representations in Monkey Inferotemporal Cortex , 2014, Neural Computation.

[90]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[91]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[92]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[93]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[94]  Gunter Loffler,et al.  Synthetic faces, face cubes, and the geometry of face space , 2002, Vision Research.

[95]  M. Alex O. Vasilescu Multilinear projection for face recognition via canonical decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[96]  Lawrence Sirovich,et al.  Symmetry, probability, and recognition in face space , 2009, Proceedings of the National Academy of Sciences.

[97]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[98]  L. Parr,et al.  The evolution of face processing in primates , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[99]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[100]  H. Lantéri,et al.  COMPARISON BETWEEN ISRA AND RLA ALGORITHMS. USE OF A WIENER FILTER BASED STOPPING CRITERION , 1999 .

[101]  P. Sinha,et al.  Contribution of Color to Face Recognition , 2002, Perception.

[102]  Marlene Behrmann,et al.  Feature-based face representations and image reconstruction from behavioral and neural data , 2015, Proceedings of the National Academy of Sciences.

[103]  I. Craw,et al.  Effects of high-pass and low-pass spatial filtering on face identification , 1996, Perception & psychophysics.

[104]  Marcel A. J. van Gerven,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2014, The Journal of Neuroscience.

[105]  Sidney R. Lehky,et al.  Attention Effects on Neural Population Representations for Shape and Location Are Stronger in the Ventral than Dorsal Stream , 2018, eNeuro.

[106]  D. Perrett,et al.  Color sensitivity of cells responsive to complex stimuli in the temporal cortex. , 2003, Journal of neurophysiology.

[107]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[108]  Paul M. B. Vitányi,et al.  Algorithmic information theory , 2008, ArXiv.

[109]  Radoslaw Martin Cichy,et al.  The Neural Code for Face Orientation in the Human Fusiform Face Area , 2014, The Journal of Neuroscience.

[110]  A. O'Toole,et al.  Probing the Visual Representation of Faces With Adaptation , 2006, Psychological science.

[111]  Rachel A Robbins,et al.  A Review and Clarification of the Terms “holistic,” “configural,” and “relational” in the Face Perception Literature , 2012, Front. Psychology.

[112]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[113]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[114]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[115]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[116]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[117]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[118]  Keiji Tanaka,et al.  Neural representation for object recognition in inferotemporal cortex , 2016, Current Opinion in Neurobiology.

[119]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[120]  Rasmus Broa,et al.  Modeling multiway data with linearly dependent loadings y , 2009 .

[121]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[122]  Alwin Stegeman,et al.  Improved Uniqueness Conditions for Canonical Tensor Decompositions with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[123]  Feng Qianjin,et al.  Projected gradient methods for Non-negative Matrix Factorization based relevance feedback algorithm in medical image retrieval , 2011 .

[124]  Galit Yovel,et al.  A Revised Neural Framework for Face Processing. , 2015, Annual review of vision science.

[125]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[126]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[127]  Peter Janssen,et al.  The Role of Binocular Disparity in Stereoscopic Images of Objects in the Macaque Anterior Intraparietal Area , 2013, PloS one.

[128]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[129]  D. Weiskopf,et al.  The role of color in high-level vision , 2001, Trends in Cognitive Sciences.

[130]  Hossein Esteky,et al.  Neuronal Correlates of View Representation Revealed by Face-View Aftereffect , 2013, The Journal of Neuroscience.

[131]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[132]  Terrence J. Sejnowski,et al.  Seeing White: Qualia in the Context of Decoding Population Codes , 1999, Neural Computation.

[133]  Sidney R. Lehky,et al.  Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates , 2014, Front. Integr. Neurosci..

[134]  André Lima Férrer de Almeida,et al.  Overview of constrained PARAFAC models , 2014, EURASIP Journal on Advances in Signal Processing.

[135]  Allison B. Sekuler,et al.  Spatial frequency tuning of upright and inverted face identification , 2008, Vision Research.

[136]  Dwight J. Kravitz,et al.  Real-World Scene Representations in High-Level Visual Cortex: It's the Spaces More Than the Places , 2011, The Journal of Neuroscience.

[137]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[138]  Ruth Kimchi,et al.  Holistic face perception , 2015 .

[139]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[140]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[141]  R. Desimone,et al.  Selectivity and sparseness in the responses of striate complex cells , 2005, Vision Research.

[142]  Andrzej Cichocki,et al.  From basis components to complex structural patterns , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[143]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[144]  R. Näsänen Spatial frequency bandwidth used in the recognition of facial images , 1999, Vision Research.

[145]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[146]  Demetri Terzopoulos,et al.  Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[147]  D. Tolhurst,et al.  The Sparseness of Neuronal Responses in Ferret Primary Visual Cortex , 2009, The Journal of Neuroscience.

[148]  Charles H. Bennett Complexity in the Universe , 2014 .

[149]  G. Rhodes,et al.  Adaptive norm-based coding of facial identity , 2006, Vision Research.