Actuators for Soft Robotics

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old-fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently – in other terms, robots will be soft.

[1]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[2]  Alin Albu-Schäffer,et al.  State feedback damping control for a multi DOF variable stiffness robot arm , 2011, 2011 IEEE International Conference on Robotics and Automation.

[3]  Alin Albu-Schäffer,et al.  Optimal control for exploiting the natural dynamics of Variable Stiffness robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[4]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[5]  Alin Albu-Schäffer,et al.  Optimal control for maximizing potential energy in a variable stiffness joint , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[6]  Alin Albu-Schäffer,et al.  The DLR hand arm system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[7]  Rogelio Lozano,et al.  Energy based control of the Pendubot , 2000, IEEE Trans. Autom. Control..

[8]  Etienne Burdet,et al.  Technical note A method for measuring endpoint sti!ness during multi-joint arm movements , 2000 .

[9]  Daniela Rus,et al.  Compliant Modular Shape Memory Alloy Actuators: Composable Flexible Small Actuators Built from Thin Shape Sheets , 2010 .

[10]  Shigeki Sugano,et al.  Development and evaluation of seven DOF MIA ARM , 1997, Proceedings of International Conference on Robotics and Automation.

[11]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[12]  Giorgio Grioli,et al.  A Stiffness Estimator for Agonistic–Antagonistic Variable-Stiffness-Actuator Devices , 2014, IEEE Transactions on Robotics.

[13]  Mark L Latash,et al.  Motor synergies and the equilibrium-point hypothesis. , 2010, Motor control.

[14]  Alessandro De Luca Decoupling and feedback linearization of robots with mixed rigid/elastic joints , 1996, ICRA.

[15]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[16]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[18]  R. Trumbower,et al.  Use of Self-Selected Postures to Regulate Multi-Joint Stiffness During Unconstrained Tasks , 2009, PloS one.

[19]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[20]  Bram Vanderborght,et al.  Second generation pleated pneumatic artificial muscle and its robotic applications , 2006, Adv. Robotics.

[21]  Shyh-Chour Huang,et al.  Design of topologically optimal microgripper , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[22]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[23]  Patrick van der Smagt,et al.  Neural Network Control of a Pneumatic Robot Arm , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[24]  N. Hogan Adaptive control of mechanical impedance by coactivation of antagonist muscles , 1984 .

[25]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[26]  Kenichi Ogawa,et al.  Honda humanoid robots development , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  J. Salisbury,et al.  Active stiffness control of a manipulator in cartesian coordinates , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[28]  Alin Albu-Schäffer,et al.  On a new generation of torque controlled light-weight robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[29]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[30]  L. C. Visser,et al.  Robust bipedal walking with variable leg stiffness , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[31]  Kazuhito Yokoi,et al.  Experimental Study of Humanoid Robot HRP-1S , 2004, Int. J. Robotics Res..

[32]  Antonio Bicchi,et al.  Optimality principles in stiffness control: The VSA kick , 2012, 2012 IEEE International Conference on Robotics and Automation.

[33]  Jae-Sung Bae,et al.  Improved Concept and Model of Eddy Current Damper , 2006 .

[34]  E Burdet,et al.  A method for measuring endpoint stiffness during multi-joint arm movements. , 2000, Journal of biomechanics.

[35]  John Kenneth Salisbury,et al.  Preliminary design of a whole-arm manipulation system (WAMS) , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[36]  F. Carpi,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[37]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[38]  Nikolaos G. Tsagarakis,et al.  A decoupled impedance observer for a variable stiffness robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[39]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[40]  E. Bizzi,et al.  Neural, mechanical, and geometric factors subserving arm posture in humans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  Emanuel Todorov,et al.  Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems , 2004, ICINCO.

[42]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[43]  Bram Vanderborght,et al.  Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness , 2010, Springer Tracts in Advanced Robotics.

[44]  Gustavo Fernández Liquid-crystal polymers: Exotic actuators. , 2013, Nature materials.

[45]  Igor Krivts,et al.  Pneumatic Actuating Systems for Automatic Equipment: Structure and Design , 2006 .

[46]  Nikolaos G. Tsagarakis,et al.  VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[47]  Alin Albu-Schäffer,et al.  Energy Shaping Control for a Class of Underactuated Euler-Lagrange Systems , 2012, SyRoCo.

[48]  J. Flanagan,et al.  Modulation of grip force with load force during point-to-point arm movements , 2004, Experimental Brain Research.

[49]  Dirk Lefeber,et al.  The Concept and Design of Pleated Pneumatic Artificial Muscles , 2001 .

[50]  Darwin G. Caldwell,et al.  Control of pneumatic muscle actuators , 1995 .

[51]  P. Crago,et al.  Multijoint dynamics and postural stability of the human arm , 2004, Experimental Brain Research.

[52]  Blake Hannaford,et al.  The anthroform biorobotic arm: A system for the study of spinal circuits , 1995, Annals of Biomedical Engineering.

[53]  Rieko Osu,et al.  Measuring Stiffness During Arm Movements in Various Dynamic Environments , 1999, Dynamic Systems and Control.

[54]  Mitsuo Kawato,et al.  Human arm stiffness and equilibrium-point trajectory during multi-joint movement , 1997, Biological Cybernetics.

[55]  Antonio Bicchi,et al.  Compliant design for intrinsic safety: general issues and preliminary design , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[56]  Kanji Inoue,et al.  Rubbertuators and applications for robots , 1988 .

[57]  Robert J. Wood,et al.  Compliant Modular Shape Memory Alloy Actuators , 2010, IEEE Robotics & Automation Magazine.

[58]  Joel E. Chestnutt,et al.  The Actuator With Mechanically Adjustable Series Compliance , 2010, IEEE Transactions on Robotics.

[59]  D J Ostry,et al.  Are complex control signals required for human arm movement? , 1998, Journal of neurophysiology.

[60]  Karl T. Ulrich,et al.  Intrinsically Safer Robots , 1995 .

[61]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[62]  Alin Albu-Schäffer,et al.  Modal limit cycle control for variable stiffness actuated robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[63]  Nikolaos G. Tsagarakis,et al.  A variable physical damping actuator (VPDA) for compliant robotic joints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[64]  Xiaoning Zhang,et al.  An electrorheological fluid damper for robots , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[65]  M. B. Khamesee,et al.  A novel eddy current damper: theory and experiment , 2009 .

[66]  K A Edge,et al.  Damp-by-wire : Magnetorheological vs. friction dampers , 2005 .

[67]  John D W Madden Stiffer Than Steel , 2009, Science.

[68]  Alessandro De Luca,et al.  On the feedback linearization of robots with variable joint stiffness , 2008, 2008 IEEE International Conference on Robotics and Automation.

[69]  Giorgio Grioli,et al.  A Non-invasive Real-Time Method for Measuring Variable Stiffness , 2010, Robotics: Science and Systems.

[70]  Jun Ueda,et al.  Nested Piezoelectric Cellular Actuators for a Biologically Inspired Camera Positioning Mechanism , 2013, IEEE Transactions on Robotics.

[71]  Giorgio Grioli,et al.  A real time robust observer for an Agonist-Antagonist Variable Stiffness Actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[72]  Jun Ueda,et al.  Two-Port Network Models for Compliant Rhomboidal Strain Amplifiers , 2013, IEEE Transactions on Robotics.

[73]  A. G. Feldman Once More on the Equilibrium-Point Hypothesis (λ Model) for Motor Control , 1986 .

[74]  Alessandro De Luca,et al.  Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[75]  Timothy Bretl,et al.  Mechanics and Quasi-Static Manipulation of Planar Elastic Kinematic Chains , 2013, IEEE Transactions on Robotics.

[76]  Stephen P. DeWeerth,et al.  Biologically Inspired Joint Stiffness Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[77]  Antonio Bicchi,et al.  On making robots understand safety: Embedding injury knowledge into control , 2012, Int. J. Robotics Res..

[78]  Antonio Bicchi,et al.  Soft-actuators in cyclic motion: Analytical optimization of stiffness and pre-load , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[79]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[80]  A. D. Luca Decoupling and feedback linearization of robots with mixed rigid/elastic joints , 1998 .

[81]  Alin Albu-Schäffer,et al.  Soft robotics: what Cartesian stiffness can obtain with passively compliant, uncoupled joints? , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[82]  A. Parr Hydraulics and Pneumatics: A technician's and engineer's guide , 1991 .

[83]  Alessandro De Luca,et al.  A general algorithm for dynamic feedback linearization of robots with elastic joints , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[84]  Nikolaos G. Tsagarakis,et al.  A Variable Damping module for Variable Impedance Actuation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[85]  Bram Vanderborght,et al.  A pneumatic biped: experimental walking results and compliance adaptation experiments , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[86]  Paolo Rocco,et al.  Safety-Oriented Control of Robotic Manipulators - a Kinematic Approach , 2011 .

[87]  Nikolaos G. Tsagarakis,et al.  A position and stiffness control strategy for variable stiffness actuators , 2012, 2012 IEEE International Conference on Robotics and Automation.

[88]  A. Gosline,et al.  Eddy Current Brakes for Haptic Interfaces: Design, Identification, and Control , 2008, IEEE/ASME Transactions on Mechatronics.

[89]  Joel E. Chestnutt,et al.  An actuator with physically variable stiffness for highly dynamic legged locomotion , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[90]  Howard A. Baldwin Realizable Models of Muscle Function , 1969 .

[91]  Antonio Bicchi,et al.  Embodying Desired Behavior in Variable Stiffness Actuators , 2011 .

[92]  Emanuel Todorov,et al.  Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system , 2007, Int. J. Control.

[93]  Keng Peng Tee,et al.  A model of force and impedance in human arm movements , 2004, Biological Cybernetics.

[94]  H H Asada,et al.  Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms , 2010, IEEE/ASME Transactions on Mechatronics.

[95]  M. Kawato,et al.  Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics , 2003, Experimental Brain Research.

[96]  K. Hashimoto,et al.  Measurement of mechanical impedance using quartz resonator force sensor during the process of grasping , 2004, SICE 2004 Annual Conference.

[97]  J. Schultz,et al.  Experimental Verification of Discrete Switching Vibration Suppression , 2012, IEEE/ASME Transactions on Mechatronics.

[98]  Alin Albu-Schäffer,et al.  Orbital stabilization of mechanical systems through semidefinite Lyapunov functions , 2013, 2013 American Control Conference.

[99]  Giorgio Grioli,et al.  Variable Stiffness Actuators: Review on Design and Components , 2016, IEEE/ASME Transactions on Mechatronics.

[100]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[101]  Sadao Kawamura,et al.  Resonance-based motion control method for multi-joint robot through combining stiffness adaptation and iterative learning control , 2009, 2009 IEEE International Conference on Robotics and Automation.

[102]  Nikolaos G. Tsagarakis,et al.  On-line estimation of variable stiffness in flexible robot joints , 2012, Int. J. Robotics Res..

[103]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[104]  Neville Hogan,et al.  Stability properties of human reaching movements , 2004, Experimental Brain Research.

[105]  Alin Albu-Schäffer,et al.  Dynamic modelling and control of variable stiffness actuators , 2010, 2010 IEEE International Conference on Robotics and Automation.

[106]  H. Gomi,et al.  Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction with Environments , 1998, The Journal of Neuroscience.

[107]  N. G. Tsagarakis,et al.  A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS) , 2013, IEEE/ASME Transactions on Mechatronics.

[108]  Manuel G. Catalano,et al.  Optimal control and design guidelines for soft jumping robots: Series elastic actuation and parallel elastic actuation in comparison , 2013, 2013 IEEE International Conference on Robotics and Automation.

[109]  N. Hogan Mechanical Impedance of Single- and Multi-Articular Systems , 1990 .

[110]  Nikolaos G. Tsagarakis,et al.  Variable stiffness actuators: The user’s point of view , 2015, Int. J. Robotics Res..

[111]  Nikolaos G. Tsagarakis,et al.  COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control , 2013, 2013 IEEE International Conference on Robotics and Automation.