Performance evaluation of a multi-agent risk-sensitive tracking system

In this paper, we consider a simple linear exponential quadratic Gaussian (LEQG) tracking problem for a multi- agent system. We study the dynamical behaviors of the group as we vary the risk-sensitivity parameter, comparing in particular the risk averse case to the LQG case. Then we consider the evolution of the performance per agent as the number of agents in the system increases. We provide some analytical as well as simulation results. In general, more agents are beneficial only if noisy agent dynamics and/or imperfect measurements are considered. The critical value of the risk sensitivity parameter above which the cost becomes infinite increases with the number of agents. In other words, for a fixed positive value of this parameter, there is a minimum number of agents above which the cost remains finite.

[1]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[2]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[3]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[4]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[5]  J.N. Tsitsiklis,et al.  Convergence in Multiagent Coordination, Consensus, and Flocking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  Sulema Aranda,et al.  On Optimal Sensor Placement and Motion Coordination for Target Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Munther A. Dahleh,et al.  Optimal Delay in Networks with Controlled Mobility , 2006 .

[8]  A. Willsky Multiresolution Markov models for signal and image processing , 2002, Proc. IEEE.

[9]  Sampath Kannan,et al.  Randomized Pursuit-Evasion with Local Visibility , 2006, SIAM J. Discret. Math..

[10]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[11]  Cédric Langbort,et al.  Distributed control design for systems interconnected over an arbitrary graph , 2004, IEEE Transactions on Automatic Control.

[12]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[13]  S. Sastry,et al.  Probabilistic pursuit-evasion games: a one-step Nash approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[14]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[17]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[18]  T. Shermer Recent Results in Art Galleries , 1992 .

[19]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[20]  Ian R. Petersen,et al.  Robustness and risk-sensitive filtering , 2002, IEEE Trans. Autom. Control..

[21]  T. Başar,et al.  Model simplification and optimal control of stochastic singularly perturbed systems under exponentiated quadratic cost , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[22]  E. Frazzoli,et al.  On the time complexity of conflict-free vehicle routing , 2005, Proceedings of the 2005, American Control Conference, 2005..

[23]  Emilio Frazzoli,et al.  On Multiple UAV Routing with Stochastic Targets: Performance Bounds and Algorithms , 2005 .

[24]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[25]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..