Iterative Tuning of Simple Cells for Contrast Invariant Edge Enhancement

This work describes a novel model for orientation tuning of simple cells in V1. The model has been inspired by a regular structure of simple cells in the visual primary cortex of mammals. Two new features distinguish the model: the iterative processing of visual inputs; and amplification of tuned responses of spatially close simple cells. Results show that after several iterations the processing converges to a stable solution while making edge enhancement largely contrast independent. The model suppresses weak edges in the vicinity of contrastive luminance changes but enhances isolated low-intensity changes. We demonstrate the capabilities of the model by processing synthetic as well as natural images.

[1]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[2]  Rolf Pfeifer,et al.  Understanding intelligence , 2020, Inequality by Design.

[3]  Heiko Neumann,et al.  A Contrast- and Luminance-driven Multiscale Network Model of Brightness Perception , 1995, Vision Research.

[4]  D. Ferster The synaptic inputs to simple cells of the cat visual cortex. , 1992, Progress in brain research.

[5]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[6]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[7]  Dario Floreano,et al.  From Animals to Animats 6 , 2000 .

[8]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[9]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[10]  Heiko Neumann,et al.  Interaction of ON and OFF pathways for visual contrast measurement , 1999, Biological Cybernetics.

[11]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[12]  Heiko Neumann,et al.  A model of V1 visual contrast processing utilizing long-range connections and recurrent interactions , 1999 .

[13]  Heiko Neumann,et al.  A simple cell model with dominating opponent inhibition for robust contrast detection , 2000, Kognitionswissenschaft.

[14]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[15]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[16]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[17]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[18]  T. Hansen,et al.  Ein Modell kortikaler Einfachzellen mit dominanter opponenter Inhibition zur robusten Kontrastdetektion , 2000 .

[19]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[20]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[21]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[22]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  T. Wiesel Neural Mechanisms of Visual Perception , 1997 .

[24]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[25]  Rolf Pfeifer,et al.  On the role of morphology and materials in adaptive behavior , 2000 .