Circuits that build visual cortical receptive fields

[1]  J F Fulton,et al.  Physiology of the Nervous System , 1939, Science.

[2]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[3]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[4]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[5]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[6]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[7]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[8]  U. Yinon,et al.  Receptive fields and response properties of neurons in the rat visual cortex , 1975, Vision Research.

[9]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[10]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[11]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[12]  H B Barlow,et al.  Threshold setting by the surround of cat retinal ganglion cells. , 1976, The Journal of physiology.

[13]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[14]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[15]  G. Henry Receptive field classes of cells in the striate cortex of the cat , 1977, Brain Research.

[16]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[17]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[18]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[19]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[20]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[21]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[22]  G. Henry,et al.  Ordinal position of neurons in cat striate cortex. , 1979, Journal of neurophysiology.

[23]  S. Murray Sherman,et al.  Morphology of physiologically identified neurons in the visual cortex of the cat , 1979, Brain Research.

[24]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of neurophysiology.

[25]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[26]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[27]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[28]  S Kishimoto,et al.  [Trends in immunology]. , 1983, Nihon rinsho. Japanese journal of clinical medicine.

[29]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[30]  D. Tolhurst,et al.  On the distinctness of simple and complex cells in the visual cortex of the cat. , 1983, The Journal of physiology.

[31]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  J. P. Jones,et al.  Periodic simple cells in cat area 17. , 1984, Journal of neurophysiology.

[33]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[34]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  J. P. Jones,et al.  Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. , 1984, Journal of neurophysiology.

[36]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[37]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[38]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[39]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[40]  田中 啓治 Organization of Geniculate Inputs to Visual Cortical Cells in the Cat , 1986 .

[41]  K Albus,et al.  The contribution of GABA-mediated inhibitory mechanisms to visual response properties of neurons in the kitten's striate cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[44]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  O D Creutzfeldt,et al.  Whole cell recording and conductance measurements in cat visual cortex in-vivo. , 1991, Neuroreport.

[47]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[49]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[50]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[51]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[52]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[53]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[54]  Trichur Raman Vidyasagar,et al.  Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo , 1993, Visual Neuroscience.

[55]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[56]  J. A. Hirsch Synaptic integration in layer IV of the ferret striate cortex. , 1995, The Journal of physiology.

[57]  D. Snodderly,et al.  Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. , 1995, Journal of neurophysiology.

[58]  A. Sillito,et al.  Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[60]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[61]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[62]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[63]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[64]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[65]  Z. Gil,et al.  Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. , 1996, Journal of neurophysiology.

[66]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[67]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[68]  T. Wiesel Neural Mechanisms of Visual Perception , 1997 .

[69]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[70]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[71]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[72]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[73]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[74]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[75]  Y. Frégnac,et al.  Activity‐dependent regulation of ‘on’ and ‘off’ responses in cat visual cortical receptive fields , 1998, The Journal of physiology.

[76]  C. A. Gallagher,et al.  Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex , 1998, The Journal of Neuroscience.

[77]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[78]  J. Isaac,et al.  Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses , 1999, Nature.

[79]  A B Saul,et al.  Visual cortical simple cells: Who inhibits whom , 1999, Visual Neuroscience.

[80]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[81]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[82]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[83]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[84]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[85]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[86]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[87]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[88]  Nicholas J Priebe,et al.  A New Mechanism for Neuronal Gain Control (or How the Gain in Brains Has Mainly Been Explained) , 2002, Neuron.

[89]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[90]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[91]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[92]  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[93]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[94]  Luis M Martinez,et al.  Synaptic physiology of the flow of information in the cat's visual cortex in vivo , 2002, The Journal of physiology.

[95]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[96]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[97]  David Fitzpatrick,et al.  Emergent Properties of Layer 2/3 Neurons Reflect the Collinear Arrangement of Horizontal Connections in Tree Shrew Visual Cortex , 2003, The Journal of Neuroscience.

[98]  K. Miller,et al.  Different Roles for Simple-Cell and Complex-Cell Inhibition in V1 , 2003, The Journal of Neuroscience.

[99]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[101]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[102]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[103]  W. Usrey,et al.  Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. , 2003, Journal of neurophysiology.

[104]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[105]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[106]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[107]  D. Tolhurst,et al.  The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex , 2004, Experimental Brain Research.

[108]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[109]  G. Buzsáki,et al.  Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons , 2004, Trends in Neurosciences.

[110]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[111]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[112]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[113]  A. Burkhalter,et al.  Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex , 2004, Experimental Brain Research.

[114]  E. Tzavara,et al.  A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. , 2005, Trends in pharmacological sciences.

[115]  C. van Broeckhoven,et al.  Tau is central in the genetic Alzheimer-frontotemporal dementia spectrum. , 2005, Trends in genetics : TIG.

[116]  Glyn W. Humphreys,et al.  Domain-specificity and theory of mind: evaluating neuropsychological evidence , 2005, Trends in Cognitive Sciences.

[117]  D. Mohr,et al.  The role of stress-response systems for the pathogenesis and progression of MS. , 2005, Trends in immunology.

[118]  E. Hol,et al.  The proteasome in Alzheimer's disease and Parkinson's disease: lessons from ubiquitin B+1. , 2005, Trends in molecular medicine.

[119]  D. Ringach,et al.  Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex. , 2005, Journal of neurophysiology.

[120]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[121]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[122]  P. Somogyi Synaptic Organization of GABAergic Neurons and GABA A Receptors in the Lateral Geniculate Nucleus and Visual Cortex , 2006 .