Distance-based Equilibria in Normal-Form Games

We propose a simple uncertainty modification for the agent model in normal-form games; at any given strategy profile, the agent can access only a set of "possible profiles" that are within a certain distance from the actual action profile. We investigate the various instantiations in which the agent chooses her strategy using well-known rationales e.g., considering the worst case, or trying to minimize the regret, to cope with such uncertainty. Any such modification in the behavioral model naturally induces a corresponding notion of equilibrium; a distance-based equilibrium. We characterize the relationships between the various equilibria, and also their connections to well-known existing solution concepts such as Trembling-hand perfection. Furthermore, we deliver existence results, and show that for some class of games, such solution concepts can actually lead to better outcomes.

[1]  David C. Parkes,et al.  Congestion Games with Distance-Based Strict Uncertainty , 2014, AAAI.

[2]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[3]  Paul G. Spirakis,et al.  Lipschitz Continuity and Approximate Equilibria , 2016, SAGT.

[4]  Craig Boutilier,et al.  Regret Minimizing Equilibria and Mechanisms for Games with Strict Type Uncertainty , 2004, UAI.

[5]  A. Wald Contributions to the Theory of Statistical Estimation and Testing Hypotheses , 1939 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Sérgio Ribeiro da Costa Werlang,et al.  Nash equilibrium under knightian uncertainty: breaking down backward induction (extensively revised version) , 1993 .

[8]  Michael P. Wellman,et al.  Real-world applications of Bayesian networks , 1995, CACM.

[9]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[10]  M. Messner,et al.  Robust Political Equilibria Under Plurality and Runoff Rule , 2005 .

[11]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[12]  Omer Lev,et al.  Heuristic Voting as Ordinal Dominance Strategies , 2018, AAAI.

[13]  Nico Potyka,et al.  Group Decision Making via Probabilistic Belief Merging , 2016, IJCAI.

[14]  H. Carlsson,et al.  Global Games and Equilibrium Selection , 1993 .

[15]  Tuomas Sandholm,et al.  Practical exact algorithm for trembling-hand equilibrium refinements in games , 2018, NeurIPS.

[16]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[17]  Vincent Conitzer,et al.  Dominating Manipulations in Voting with Partial Information , 2011, AAAI.

[18]  Tim Roughgarden,et al.  Intrinsic robustness of the price of anarchy , 2009, STOC '09.

[19]  R. Aumann Rationality and Bounded Rationality , 1997 .

[20]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[21]  Massimo Marinacci,et al.  Ambiguous Games , 2000, Games Econ. Behav..

[22]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[23]  Maria-Florina Balcan,et al.  Improved equilibria via public service advertising , 2009, SODA.

[24]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[25]  Ariel D. Procaccia,et al.  Biased Games , 2014, AAAI.

[26]  Dimitris Bertsimas,et al.  Robust game theory , 2006, Math. Program..

[27]  Omer Lev,et al.  A local-dominance theory of voting equilibria , 2014, EC.

[28]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[29]  Tuomas Sandholm,et al.  Trembling-Hand Perfection in Extensive-Form Games with Commitment , 2018, IJCAI.

[30]  Krzysztof R. Apt,et al.  The Many Faces of Rationalizability , 2006, ArXiv.

[31]  Akira Okada,et al.  On stability of perfect equilibrium points , 1981 .

[32]  Itzhak Gilboa,et al.  Probability and Uncertainty in Economic Modeling , 2008 .

[33]  Colin Camerer,et al.  A Cognitive Hierarchy Model of Games , 2004 .