Smooth and time-optimal trajectory planning for industrial manipulators along specified paths

This article presents a method for determining smooth and time-optimal path constrained trajectories for robotic manipulators and investigates the performance of these trajectories both through simulations and experiments. The desired smoothness of the trajectory is imposed through limits on the torque rates. The third derivative of the path parameter with respect to time, the pseudo-jerk, is the controlled input. The limits on the actuator torques translate into state-dependent limits on the pseudoacceleration. The time-optimal control objective is cast as an optimization problem by using cubic splines to parametrize the state space trajectory. The optimization problem is solved using the flexible tolerance method. The experimental results presented show that the planned smooth trajectories provide superior feasible time-optimal motion. Q 2000 John Wiley & Sons, Inc.

[1]  F. Pfeiffer,et al.  Optimal trajectory planning with application to industrial robots , 1994 .

[2]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[3]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .

[4]  James E. Bobrow,et al.  Determination of minimum-effort motions for general open chains , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[5]  Beno Benhabib,et al.  Near-time optimal robot motion planning foe on-line applications , 1995, J. Field Robotics.

[6]  M. Vukobratovic,et al.  A Method for Optimal Synthesis of Manipulation Robot Trajectories , 1982 .

[7]  L. M. Hocking Optimal control : an introduction to the theory with applications , 1991 .

[8]  Ming-Chuan Leu,et al.  Optimal trajectory generation for robotic manipulators using dynamic programming , 1987 .

[9]  J. Y. S. Luh,et al.  Approximate joint trajectories for control of industrial robots along Cartesian paths , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[11]  Elmer G. Gilbert,et al.  Distance functions and their application to robot path planning in the presence of obstacles , 1985, IEEE J. Robotics Autom..

[12]  Bruce Randall Donald,et al.  Time-safety trade-offs and a bang-bang algorithm for kinodynamic planning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Zvi Shiller,et al.  The practical implementation of time-optimal control for robotic manipulators , 1996 .

[14]  V. T. Rajan Minimum time trajectory planning , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[15]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[16]  Dan Simon The application of neural networks to optimal robot trajectory planning , 1993, Robotics Auton. Syst..

[17]  L. Nielsen,et al.  Torque limited path following by on-line trajectory time scaling , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[18]  Steven Dubowsky,et al.  Time optimal trajectory planning for robotic manipulators with obstacle avoidance: A CAD approach , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[19]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[20]  J. Michael McCarthy,et al.  The number of saturated actuators and constraint forces during time-optimal movement of a general robotic system , 1992, IEEE Trans. Robotics Autom..

[21]  Tsu-Tian Lee,et al.  Online approximate Cartesian path trajectory planning for robotic manipulators , 1992, IEEE Trans. Syst. Man Cybern..

[22]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[23]  Matthew R. James,et al.  Robust and accurate time-optimal path-tracking control for robot manipulators , 1997, IEEE Trans. Robotics Autom..

[24]  Hon-Yuen Tam,et al.  Minimum time closed-loop tracking of a specified path by robot , 1990, 29th IEEE Conference on Decision and Control.

[25]  Lino Guzzella,et al.  Time-optimal motions of robots in assembly tasks , 1985, 1985 24th IEEE Conference on Decision and Control.

[26]  Daniela Constantinescu,et al.  Smooth time optimal trajectory planning for industrial manipulators , 1998 .

[27]  Eduardo D. Sontag,et al.  Time-optimal control of manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[28]  Kostas J. Kyriakopoulos,et al.  Minimum jerk path generation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[29]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[30]  Zvi Shiller Interactive time optimal robot motion planning and work-cell layout design , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[31]  Howard M. Schwartz,et al.  Optimal control of a robot manipulator using a weighted time-energy cost function , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[32]  Eduardo Sontag,et al.  Remarks on the time-optimal control of two-link manipulators , 1985, 1985 24th IEEE Conference on Decision and Control.

[33]  Yaobin Chen,et al.  Structure of minimum-time control law for robotic manipulators with constrained paths , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[34]  Zvi Shiller,et al.  On singular time-optimal control along specified paths , 1994, IEEE Trans. Robotics Autom..

[35]  Zvi Shiller,et al.  Time-energy optimal control of articulated systems with geometric path constraints , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[36]  Yaobin Chen,et al.  A continuation method for time-optimal control synthesis for robotic point-to-point motion , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[37]  Elmer Gilbert,et al.  Minimum time robot path planning in the presence of obstacles , 1985, 1985 24th IEEE Conference on Decision and Control.

[38]  Masayoshi Tomizuka,et al.  A Suboptimal Reference Generation Technique for Robotic Manipulators Following Specified Paths , 1992 .

[39]  C. Lin,et al.  Formulation and optimization of cubic polynomial joint trajectories for industrial robots , 1983 .

[40]  David M. Himmelblau,et al.  Constrained Nonlinear Optimization by Heuristic Programming , 1969, Oper. Res..

[41]  Y. Hamam,et al.  Optimal Trajectory Planning of Manipulators With Collision Detection and Avoidance , 1992 .

[42]  Kostas J. Kyriakopoulos,et al.  Minimum jerk for trajectory planning and control , 1994, Robotica.

[43]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[44]  Yaobin Chen,et al.  An improved computation of time-optimal control trajectory for robotic point-to-point motion , 1996 .

[45]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988 .

[46]  C. Lui,et al.  On-line Cartesian path trajectory planning for robot manipulators , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[47]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[48]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[49]  Jean-Yves Fourquet Optimal control theory and complexity of the time-optimal problem for rigid manipulators , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[50]  Zvi Shiller,et al.  Time optimal motions of manipulators with actuator dynamics , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[51]  W. S. Newman Robust near time-optimal control , 1990 .

[52]  N. McKay,et al.  A dynamic programming approach to trajectory planning of robotic manipulators , 1986 .

[53]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[54]  John F. Canny,et al.  Time-optimal trajectories for a robot manipulator: a provably good approximation algorithm , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[55]  John M. Hollerbach,et al.  Planning a minimum-time trajectories for robot arms , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[56]  Yaobin Chen,et al.  A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation , 1990, IEEE Trans. Robotics Autom..

[57]  George W. Irwin,et al.  Time-optimal and smooth constrained path planning for robot manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[58]  Yusuf Altintas,et al.  Open Architecture Modular Tool Kit for Motion and Machining Process Control , 1998 .

[59]  J. Hollerbach Dynamic Scaling of Manipulator Trajectories , 1983, 1983 American Control Conference.