Frequently Asked Questions for: The Atoms of Neural Computation

Based on a survey of the literature, we attempt to answer Frequently Asked Questions on issues of cortical uniformity vs. non-uniformity, the neural mechanisms of symbolic variable binding, and other issues highlighted in (Marcus, Marblestone and Dean. "The Atoms of Neural Computation". Science. 31 October 2014. Vol 346. Issue 6209).

[1]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[2]  D. Frost,et al.  Induction of functional retinal projections to the somatosensory system , 1985, Nature.

[3]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[4]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[5]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  L. Shastri,et al.  From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony , 1993, Behavioral and Brain Sciences.

[7]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[8]  M. Hasselmo,et al.  Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function , 1997, Behavioural Brain Research.

[9]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[10]  Wolfgang Maass,et al.  On the Computational Power of Winner-Take-All , 2000, Neural Computation.

[11]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[12]  G. Marcus The Algebraic Mind: Integrating Connectionism and Cognitive Science , 2001 .

[13]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[14]  Guy N Elston,et al.  Cortical heterogeneity: Implications for visual processing and polysensory integration , 2002, Journal of neurocytology.

[15]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[16]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[17]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[19]  Haim Sompolinsky,et al.  Nonlinear Population Codes , 2004, Neural Computation.

[20]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[21]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[22]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[23]  G. Marcus The Birth of the Mind: How a Tiny Number of Genes Creates The Complexities of Human Thought , 2004 .

[24]  J. Hawkins,et al.  On Intelligence , 2004 .

[25]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[26]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[27]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  H. Markram,et al.  The neocortical microcircuit as a tabula rasa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. O’Reilly Biologically Based Computational Models of High-Level Cognition , 2006, Science.

[30]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[31]  C. Eliasmith,et al.  Higher-Dimensional Neurons Explain the Tuning and Dynamics of Working Memory Cells , 2006, The Journal of Neuroscience.

[32]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[33]  J. R. Newton,et al.  Remodeling of Synaptic Structure in Sensory Cortical Areas In Vivo , 2006, The Journal of Neuroscience.

[34]  Denise Brandão de Oliveira e Britto,et al.  The faculty of language , 2007 .

[35]  S. Sherman The thalamus is more than just a relay , 2007, Current Opinion in Neurobiology.

[36]  B. Dickson,et al.  Dscam diversity is essential for neuronal wiring and self-recognition , 2007, Nature.

[37]  John R. Anderson How Can the Human Mind Occur in the Physical Universe , 2007 .

[38]  R. von der Heydt,et al.  Synchrony and the binding problem in macaque visual cortex. , 2008, Journal of vision.

[39]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[40]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[41]  Tomaso A. Poggio,et al.  A Canonical Neural Circuit for Cortical Nonlinear Operations , 2008, Neural Computation.

[42]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[43]  Robert F. Hadley The Problem of Rapid Variable Creation , 2009, Neural Computation.

[44]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[45]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[46]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[47]  Kai A. Krueger,et al.  Flexible shaping: How learning in small steps helps , 2009, Cognition.

[48]  Rajesh P. N. Rao,et al.  Decision Making Under Uncertainty: A Neural Model Based on Partially Observable Markov Decision Processes , 2010, Front. Comput. Neurosci..

[49]  David J. Jilk,et al.  The Leabra architecture: Specialization without modularity , 2010, Behavioral and Brain Sciences.

[50]  V. Steen,et al.  Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex , 2011, BMC Neuroscience.

[51]  Chris Eliasmith,et al.  A Spiking Neuron Model of Serial-Order Recall , 2010 .

[52]  Earl K. Miller,et al.  Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition , 2010, Front. Hum. Neurosci..

[53]  Terrence C. Stewart,et al.  of the Annual Meeting of the Cognitive Science Society Title Symbolic Reasoning in Spiking Neurons : A Model of the Cortex / Basal Ganglia / Thalamus Loop , 2010 .

[54]  Richard Hans Robert Hahnloser,et al.  Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity , 2010, Neuron.

[55]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[56]  Andrew Y. Ng,et al.  Unsupervised learning models of primary cortical receptive fields and receptive field plasticity , 2011, NIPS.

[57]  Alexander Sher,et al.  Competition is a driving force in topographic mapping , 2011, Proceedings of the National Academy of Sciences.

[58]  Matthew Cook,et al.  Neuronal Projections Can Be Sharpened by a Biologically Plausible Learning Mechanism , 2011, ICANN.

[59]  P. Scheiffele,et al.  SAM68 Regulates Neuronal Activity-Dependent Alternative Splicing of Neurexin-1 , 2011, Cell.

[60]  Geoffrey J. Goodhill,et al.  A simple model can unify a broad range of phenomena in retinotectal map development , 2011, Biological Cybernetics.

[61]  T DeWolf,et al.  The neural optimal control hierarchy for motor control , 2011, Journal of neural engineering.

[62]  Timo Honkela,et al.  Artificial Neural Networks and Machine Learning - ICANN 2011 - 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I , 2011, ICANN.

[63]  R. Kurzweil How to Create a Mind: The Secret of Human Thought Revealed , 2012 .

[64]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[65]  Kenneth J. Hayworth,et al.  Dynamically Partitionable Autoassociative Networks as a Solution to the Neural Binding Problem , 2012, Front. Comput. Neurosci..

[66]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[67]  Anthony M Zador,et al.  Differences in Sensitivity to Neural Timing among Cortical Areas , 2012, The Journal of Neuroscience.

[68]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[69]  Henry Markram,et al.  Combinatorial Expression Rules of Ion Channel Genes in Juvenile Rat (Rattus norvegicus) Neocortical Neurons , 2012, PloS one.

[70]  Matthew J. Traxler,et al.  What's Special About Human Language? The Contents of the "Narrow Language Faculty" Revisited , 2012, Lang. Linguistics Compass.

[71]  C. Eliasmith,et al.  Learning to Select Actions with Spiking Neurons in the Basal Ganglia , 2012, Front. Neurosci..

[72]  D. Geschwind,et al.  Human-Specific Transcriptional Networks in the Brain , 2012, Neuron.

[73]  Lorenzo Rosasco,et al.  The computational magic of the ventral stream: sketch of a theory (and why some deep architectures work). , 2012 .

[74]  Sean L. Hill,et al.  Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits , 2012, Proceedings of the National Academy of Sciences.

[75]  T Grant Belgard,et al.  Retooling spare parts: gene duplication and cognition , 2012, Nature Neuroscience.

[76]  Stéphane Mallat Deep Learning by Scattering , 2013, ArXiv.

[77]  Thomas C. Südhof,et al.  Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking , 2013, Cell.

[78]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[79]  H. S. Meyer,et al.  Cellular organization of cortical barrel columns is whisker-specific , 2013, Proceedings of the National Academy of Sciences.

[80]  Jonathan D. Cohen,et al.  Indirection and symbol-like processing in the prefrontal cortex and basal ganglia , 2013, Proceedings of the National Academy of Sciences.

[81]  Lorenzo Rosasco,et al.  Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning? , 2014 .

[82]  Xiao-Jing Wang The Prefrontal Cortex as a Quintessential “Cognitive-Type” Neural Circuit , 2013 .

[83]  Chris Eliasmith,et al.  How to Build a Brain: A Neural Architecture for Biological Cognition , 2013 .

[84]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[85]  Thomas L. Dean,et al.  The atoms of neural computation , 2014, Science.

[86]  David Kappel,et al.  STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning , 2014, PLoS Comput. Biol..

[87]  Thomas C. Südhof,et al.  Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing , 2014, Proceedings of the National Academy of Sciences.

[88]  J. Sanes,et al.  Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit , 2014, Cell.

[89]  P. Ellen Grant,et al.  Evolutionarily Dynamic Alternative Splicing of GPR56 Regulates Regional Cerebral Cortical Patterning , 2014, Science.

[90]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[91]  Friedemann Kiefer,et al.  Modulation of synaptic function through the α-neurexin–specific ligand neurexophilin-1 , 2014, Proceedings of the National Academy of Sciences.

[92]  Wolfgang Maass,et al.  Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning. , 2014, Cerebral cortex.

[93]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[94]  Nicholas A. Ketz,et al.  Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions , 2015, Trends in Neurosciences.

[95]  Jason Weston,et al.  Memory Networks , 2014, ICLR.