Variable Stiffness Actuators for Wearable Applications in Gait Rehabilitation

[1]  Imtiaz Ahmed Choudhury,et al.  Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot , 2014, TheScientificWorldJournal.

[2]  Elena Garcia,et al.  ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton , 2014, Ind. Robot.

[3]  Juan Carlos Arevalo,et al.  An Adjustable Compliant Joint for Lower-Limb Exoskeletons , 2015, IEEE/ASME Transactions on Mechatronics.

[4]  Diego Torricelli,et al.  Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles , 2019, Journal of NeuroEngineering and Rehabilitation.

[5]  Nikolaos G. Tsagarakis,et al.  AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Nevio Luigi Tagliamonte,et al.  A Novel Compact Torsional Spring for Series Elastic Actuators for Assistive Wearable Robots , 2012 .

[7]  D. Reinkensmeyer,et al.  Review of control strategies for robotic movement training after neurologic injury , 2009, Journal of NeuroEngineering and Rehabilitation.

[8]  Alin Albu-Schäffer,et al.  Bidirectional antagonistic variable stiffness actuation: Analysis, design & Implementation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[9]  Yongzhao Zhan,et al.  Maximum Neighborhood Margin Discriminant Projection for Classification , 2014, TheScientificWorldJournal.

[10]  L. Cohen,et al.  Neuroplasticity in the context of motor rehabilitation after stroke , 2011, Nature Reviews Neurology.

[11]  Joost Geeroms,et al.  Mechatronic design of a sit-to-stance exoskeleton , 2014, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

[12]  T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance , 2018, Biosystems & Biorobotics.

[13]  Thomas Seel,et al.  Advanced technology for gait rehabilitation: An overview , 2018, Advances in Mechanical Engineering.

[14]  M. Múnera,et al.  Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton , 2018, 2018 IEEE ANDESCON.

[15]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[16]  Eduardo Rocon,et al.  Exoskeletons in Rehabilitation Robotics: Tremor Suppression , 2011 .

[17]  R. A. R. C. Gopura,et al.  Powered Ankle Exoskeletons: Existent Designs and Control Systems , 2018 .

[18]  Alin Petcu,et al.  Actuation Systems of Active Orthoses Used for Gait Rehabilitation , 2018 .

[19]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[20]  M. Molinari,et al.  Rehabilitation of gait after stroke: a review towards a top-down approach , 2011, Journal of NeuroEngineering and Rehabilitation.

[21]  Marcela Munera,et al.  Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications , 2020 .

[22]  Marcela Munera,et al.  Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals , 2019, Sensors.

[23]  D. Lefeber,et al.  Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users , 2020, Journal of NeuroEngineering and Rehabilitation.

[24]  P. Beyl,et al.  The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[25]  Darwin G. Caldwell,et al.  Actuation Requirements for Assistive Exoskeletons: Exploiting Knowledge of Task Dynamics , 2018, Biosystems & Biorobotics.

[26]  Giorgio Grioli,et al.  Variable Stiffness Actuators: Review on Design and Components , 2016, IEEE/ASME Transactions on Mechatronics.

[27]  Shahid Hussain,et al.  Review on design and control aspects of ankle rehabilitation robots , 2015, Disability and rehabilitation. Assistive technology.

[28]  L. Sheffler,et al.  Technological advances in interventions to enhance poststroke gait. , 2013, Physical medicine and rehabilitation clinics of North America.

[29]  The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke , 2021, Brain sciences.

[30]  Carlos A. Cifuentes,et al.  Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery: A Case Study with a Stroke Survivor , 2020, 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob).

[31]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[32]  M. Tomizuka,et al.  A Compact Rotary Series Elastic Actuator for Human Assistive Systems , 2012, IEEE/ASME Transactions on Mechatronics.

[33]  Bram Vanderborght,et al.  Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization , 2019, Mechanism and Machine Theory.

[34]  Bing Chen,et al.  Recent developments and challenges of lower extremity exoskeletons , 2015, Journal of orthopaedic translation.

[35]  Bram Vanderborght,et al.  MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot , 2007, Robotics Auton. Syst..

[36]  Joost Geeroms,et al.  Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton , 2014, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

[37]  Mikhail A. Lebedev,et al.  Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach , 2016, Front. Neurosci..

[38]  Mingming Zhang,et al.  Effectiveness of robot-assisted therapy on ankle rehabilitation – a systematic review , 2013, Journal of NeuroEngineering and Rehabilitation.

[39]  Elena García Armada,et al.  MECHANICAL DESCRIPTION OF ATLAS 2020, A 10-DOF PEDIATRIC EXOSKELETON , 2016 .

[40]  Massimiliano Giulioni,et al.  Control of cortical oscillatory frequency by a closed-loop system , 2019, Journal of NeuroEngineering and Rehabilitation.

[41]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[42]  Bram Vanderborght,et al.  BioMot exoskeleton — Towards a smart wearable robot for symbiotic human-robot interaction , 2017, 2017 International Conference on Rehabilitation Robotics (ICORR).

[43]  Nikolaos G. Tsagarakis,et al.  A new variable stiffness actuator (CompAct-VSA): Design and modelling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Bram Vanderborght,et al.  Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking , 2018, Journal of NeuroEngineering and Rehabilitation.

[45]  Nikos G. Tsagarakis,et al.  A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism , 2014, IEEE/ASME Transactions on Mechatronics.

[46]  Eduardo Rocon,et al.  Exoskeletons in Rehabilitation Robotics , 2011 .

[47]  J. Hattel,et al.  Multiphysics modelling of manufacturing processes: A review , 2018 .

[48]  M. Múnera,et al.  Large-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robots , 2019, Materials.