Boundary-anchored neural mechanisms of location-encoding for self and others

[1]  Itzhak Fried,et al.  Modulation of human intracranial theta oscillations during freely moving spatial navigation and memory , 2019, bioRxiv.

[2]  Lukas Kunz,et al.  Mesoscopic Neural Representations in Spatial Navigation , 2019, Trends in Cognitive Sciences.

[3]  Thomas Wolbers,et al.  Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum , 2018, Nature Communications.

[4]  Peter Gärdenfors,et al.  Navigating cognition: Spatial codes for human thinking , 2018, Science.

[5]  Russell A. Epstein,et al.  The Neurocognitive Basis of Spatial Reorientation , 2018, Current Biology.

[6]  Christian F. Doeller,et al.  Deforming the metric of cognitive maps distorts memory , 2018, Nature Human Behaviour.

[7]  David Robbe,et al.  Dynamic control of hippocampal spatial coding resolution by local visual cues , 2018, bioRxiv.

[8]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2018, bioRxiv.

[9]  N. Ulanovsky,et al.  Social place-cells in the bat hippocampus , 2018, Science.

[10]  T. Toyoizumi,et al.  Spatial representations of self and other in the hippocampus , 2018, Science.

[11]  Zahra M. Aghajan,et al.  Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement , 2016, Current Biology.

[12]  Kathryn A Davis,et al.  Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum , 2017, The Journal of Neuroscience.

[13]  H. Bülthoff,et al.  Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation , 2016, Cognition.

[14]  Neil Burgess,et al.  The role of spatial boundaries in shaping long-term event representations , 2016, Cognition.

[15]  G. Buzsáki,et al.  Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy , 2016, Nature Medicine.

[16]  Surya Ganguli,et al.  Environmental Boundaries as an Error Correction Mechanism for Grid Cells , 2015, Neuron.

[17]  Caswell Barry,et al.  Grid cell symmetry is shaped by environmental geometry , 2015, Nature.

[18]  Edvard I. Moser,et al.  Shearing-induced asymmetry in entorhinal grid cells , 2015, Nature.

[19]  David C Rowland,et al.  Place cells, grid cells, and memory. , 2015, Cold Spring Harbor perspectives in biology.

[20]  E. Buffalo,et al.  A nonparametric method for detecting fixations and saccades using cluster analysis: Removing the need for arbitrary thresholds , 2014, Journal of Neuroscience Methods.

[21]  Michael J. Jutras,et al.  Oscillatory activity in the monkey hippocampus during visual exploration and memory formation , 2013, Proceedings of the National Academy of Sciences.

[22]  M. Morrell Responsive cortical stimulation for the treatment of medically intractable partial epilepsy , 2011, Neurology.

[23]  Jeremy B. Caplan,et al.  A better oscillation detection method robustly extracts EEG rhythms across brain state changes: The human alpha rhythm as a test case , 2011, NeuroImage.

[24]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[25]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[26]  J. O’Neill,et al.  The reorganization and reactivation of hippocampal maps predict spatial memory performance , 2010, Nature Neuroscience.

[27]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[28]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[29]  J. Knierim,et al.  Influence of boundary removal on the spatial representations of the medial entorhinal cortex , 2008, Hippocampus.

[30]  J. O’Keefe,et al.  Grid cells and theta as oscillatory interference: Electrophysiological data from freely moving rats , 2008, Hippocampus.

[31]  Neil Burgess,et al.  Distinct error-correcting and incidental learning of location relative to landmarks and boundaries , 2008, Proceedings of the National Academy of Sciences.

[32]  Yoko Yamaguchi,et al.  A long-range cortical network emerging with theta oscillation in a mental task , 2004, Neuroreport.

[33]  Ehren L. Newman,et al.  Human θ Oscillations Related to Sensorimotor Integration and Spatial Learning , 2003, The Journal of Neuroscience.

[34]  Thomas J. Wills,et al.  Long-term plasticity in hippocampal place-cell representation of environmental geometry , 2002, Nature.

[35]  S. D. Berry,et al.  Oscillatory brain states and learning: Impact of hippocampal theta-contingent training , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[37]  S. Raghavachari,et al.  Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. , 2001, Journal of neurophysiology.

[38]  S. Molden,et al.  Accumulation of Hippocampal Place Fields at the Goal Location in an Annular Watermaze Task , 2001, The Journal of Neuroscience.

[39]  Joseph R. Madsen,et al.  Human theta oscillations exhibit task dependence during virtual maze navigation , 1999, Nature.

[40]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[41]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[42]  Arne D. Ekstrom,et al.  Human hippocampal theta activity during virtual navigation , 2005, Hippocampus.

[43]  H. Teitelbaum,et al.  Relationship between hippocampal theta activity and running speed in the rat. , 1975, Journal of comparative and physiological psychology.