Optimizing Video Application Design for Phase-Change RAM-Based Main Memory

Video applications including video codecs place a large traffic demand on main memory. Emerging memory technology, such as phase-change RAM (PRAM) tends to suffer from the write endurance problem, in which the maximum number of writes is limited. Thus, it is required to improve video application designs to adapt to the new requirements of emerging memory technology, i.e., to minimize the number of writes in terms of bit updates. In this paper, we present a way to optimize video application design for PRAM-based main memory. We propose two methods to resolve the write endurance problem: inter-block differential data encoding and inter-frame multiple experts. Experimental results show an average of 18.4% reduction in bit updates when compared to the best existing data encoding methods for PRAM.

[1]  Wei Xu,et al.  Data manipulation techniques to reduce phase change memory write energy , 2009, ISLPED.

[2]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[3]  Engin Ipek,et al.  Dynamically replicated memory: building reliable systems from nanoscale resistive memories , 2010, ASPLOS XV.

[4]  Rami G. Melhem,et al.  Increasing PCM main memory lifetime , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[5]  Onur Mutlu,et al.  Architecting phase change memory as a scalable dram alternative , 2009, ISCA '09.

[6]  Hsien-Hsin S. Lee,et al.  SAFER: Stuck-At-Fault Error Recovery for Memories , 2010, 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.

[7]  Jose Renau,et al.  Effective Optimistic-Checker Tandem Core Design through Architectural Pruning , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[8]  Karin Strauss,et al.  Use ECP, not ECC, for hard failures in resistive memories , 2010, ISCA.

[9]  Hsien-Hsin S. Lee,et al.  Security refresh: prevent malicious wear-out and increase durability for phase-change memory with dynamically randomized address mapping , 2010, ISCA.

[10]  Hsien-Hsin S. Lee,et al.  Smart Refresh: An Enhanced Memory Controller Design for Reducing Energy in Conventional and 3D Die-Stacked DRAMs , 2007, 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007).

[11]  Tajana Simunic,et al.  PDRAM: A hybrid PRAM and DRAM main memory system , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[12]  Hyunjin Lee,et al.  Flip-N-Write: A simple deterministic technique to improve PRAM write performance, energy and endurance , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[13]  Byung-Gil Choi,et al.  A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With 266 MB/s Read Throughput , 2008, IEEE Journal of Solid-State Circuits.

[14]  Duane Mills,et al.  A 45nm 1Gb 1.8V phase-change memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[15]  Jun Yang,et al.  A durable and energy efficient main memory using phase change memory technology , 2009, ISCA '09.

[16]  Mircea R. Stan,et al.  Bus-invert coding for low-power I/O , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[17]  Seung-Yun Lee,et al.  A Low Power Phase-Change Random Access Memory using a Data-Comparison Write Scheme , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[18]  Vijayalakshmi Srinivasan,et al.  Enhancing lifetime and security of PCM-based Main Memory with Start-Gap Wear Leveling , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[19]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[20]  Vijayalakshmi Srinivasan,et al.  Scalable high performance main memory system using phase-change memory technology , 2009, ISCA '09.