Navigation of an Autonomous Car Using Vector Fields and the Dynamic Window Approach

This work presents a safe navigation approach for a car-like robot. The approach relies on a global motion planning based on velocity vector fields along with a dynamic window approach for avoiding unmodeled obstacles. Basically, the vector field is associated with a kinematic, feedback linearization controller whose outputs are validated, and eventually modified, by the dynamic window approach. Experiments with a full-size autonomous car equipped with a stereo camera show that the vehicle was able to track the vector field and avoid obstacles in its way.

[1]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[2]  Edison Oliveira de Jesus,et al.  Intelligent Vehicle Survey and Applications , 2007, LAPTEC.

[3]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[4]  Alberto Broggi,et al.  Obstacle Detection with Stereo Vision for Off-Road Vehicle Navigation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[5]  Sebastian Thrun,et al.  Towards fully autonomous driving: Systems and algorithms , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[6]  Ouahiba Azouaoui,et al.  Car-like robot navigation at high speed , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[7]  Beatrice Gralton,et al.  Washington DC - USA , 2008 .

[8]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[9]  Markus Maurer,et al.  Stadtpilot: First fully autonomous test drives in urban traffic , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[10]  Danilo Alves de Lima Navegação segura de um carro autônomo utilizando campos vetoriais e o método da janela dinâmica , 2010 .

[11]  Roland Siegwart,et al.  Real-time obstacle avoidance for polygonal robots with a reduced dynamic window , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Marcelo Becker,et al.  Determining forbidden steering directions for a passenger car in urban environments based on the velocity obstacle approach and use of trackers , 2011, IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE.

[13]  Carlos Andrey Maia,et al.  NAVEGAÇÃO DE ROBÔS UTILIZANDO CURVAS IMPLÍCITAS , 2010 .

[14]  David J. Haney HIGH SPEED NAVIGATION , 1954 .

[15]  Vicente Milanés Montero,et al.  Clavileño: Evolution of an autonomous car , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[16]  Fernando Santos Osório,et al.  A Driving Assistance System for Navigation in Urban Environments , 2010, IBERAMIA.

[17]  Alberto Broggi,et al.  The TerraMax Autonomous Vehicle , 2006 .

[18]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[19]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[21]  Ryan M. Eustice,et al.  A perspective on emerging automotive safety applications, derived from lessons learned through participation in the DARPA Grand Challenges , 2008, J. Field Robotics.

[22]  Guilherme A. S. Pereira,et al.  Robot Navigation in Multi-terrain Outdoor Environments , 2009, Int. J. Robotics Res..

[23]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[24]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[25]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[26]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.