Improvement of a Robotic Manipulator Model Based on Multivariate Residual Modeling

A new method is presented for extending an incomplete mathematical model - in this case a dynamic model of a six degrees of freedom robotic manipulator. A nonlinear multivariate calibration of input-output training data from several typical motion trajectories is carried out with the aim of predicting the model systematic output error at time (t+1) from known input reference up till and including time (t). A new partial least squares regression (PLSR) based method, nominal PLSR with interactions was developed and used to handle, unmodelled nonlinearities. The performance of the new method is compared with least squares (LS). Different cross-validation schemes were compared in order to assess the sampling of the state space based on conventional trajectories. The method developed in the paper can be used as fault monitoring mechanism and early warning system for sensor failure. The results show that the suggested methods improves trajectory tracking performance of the robotic manipulator by extending the initial dynamic model of the manipulator.

[1]  Marcelo H. Ang,et al.  Dynamic Model Identification for Industrial Robots , 2009 .

[2]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[3]  Kurt Hornik,et al.  Local PCA algorithms , 2000, IEEE Trans. Neural Networks Learn. Syst..

[4]  Harald Martens,et al.  The informative converse paradox: Windows into the unknown , 2011 .

[5]  Vwani P. Roychowdhury,et al.  Algorithms for accelerated convergence of adaptive PCA , 2000, IEEE Trans. Neural Networks Learn. Syst..

[6]  J. S.,et al.  EXPERIMENTAL ROBOT IDENTIFICATION USING OPTIMISED PERIODIC TRAJECTORIES , 1996 .

[7]  Stephen P. Boyd,et al.  On parameter convergence in adaptive control , 1983 .

[8]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[9]  J.T. Gravdahl,et al.  Order reduction and output feedback stabliization of an unstable CFD model , 2006, 2006 American Control Conference.

[10]  E. Jonckheere Principal component analysis of flexible systems--Open-loop case , 1984 .

[11]  Dimitry M. Gorinevsky,et al.  On the persistency of excitation in radial basis function network identification of nonlinear systems , 1995, IEEE Trans. Neural Networks.

[12]  Keegan Go,et al.  Estimation of Inertial Parameters in Simulation , 2013 .

[13]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[14]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[15]  J. W. Humberston Classical mechanics , 1980, Nature.

[16]  Desire L. Massart,et al.  Kernel-PCA algorithms for wide data Part II: Fast cross-validation and application in classification of NIR data , 1997 .

[17]  Jan Swevers,et al.  Dynamic model identification for industrial robots - Integrated experiment design and parameter estimation , 2007 .

[18]  P. Poignet,et al.  Extended Kalman filtering and weighted least squares dynamic identification of robot , 2000 .

[19]  Lennart Ljung System Identification: An Overview , 2015, Encyclopedia of Systems and Control.

[20]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[21]  Michel Verhaegen,et al.  State-space system identification of robot manipulator dynamics , 1997 .

[22]  Peter C. Young,et al.  Identification and control of electro-mechanical systems using state-dependent parameter estimation , 2017, Int. J. Control.

[23]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[24]  Kyung-Jo Park,et al.  Fourier-based optimal excitation trajectories for the dynamic identification of robots , 2006, Robotica.

[25]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[26]  Jun Wu,et al.  Review: An overview of dynamic parameter identification of robots , 2010 .

[27]  Maxime Gautier,et al.  A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics , 2010, IEEE Transactions on Control Systems Technology.

[28]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[29]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[30]  Håkan Hjalmarsson,et al.  Optimal experiment design in closed loop , 2005 .

[31]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[32]  C. Atkeson,et al.  Estimation of inertial parameters of rigid body links of manipulators , 1985, 1985 24th IEEE Conference on Decision and Control.

[33]  S. D. Jong,et al.  The kernel PCA algorithms for wide data. Part I: Theory and algorithms , 1997 .

[34]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[35]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[36]  Tung-Sang Ng,et al.  Optimal experiment design for linear systems with input-output constraints , 1977, Autom..

[37]  Jan Tommy Gravdahl,et al.  Explicit Model Predictive Control for Large-Scale Systems via Model Reduction , 2008 .

[38]  Wisama Khalil,et al.  Identification of the dynamic parameters of a closed loop robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[39]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[40]  Bodo Heimann,et al.  Friction and rigid body identification of robot dynamics , 2001 .

[41]  Chein-I Chang,et al.  Variants of Principal Components Analysis , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[43]  Persistency of excitation in possible unstable continuous-time systems, identification, and indirect adaptive control , 1989 .

[44]  Daniel L. Palumbo,et al.  A principal component feedforward algorithm for active noise control: flight test results , 2001, IEEE Trans. Control. Syst. Technol..

[45]  Bhupinder S. Dayal,et al.  Recursive exponentially weighted PLS and its applications to adaptive control and prediction , 1997 .

[46]  Soon Keat Tan,et al.  Localized, Adaptive Recursive Partial Least Squares Regression for Dynamic System Modeling , 2012 .

[47]  Sergey Nikitin Generalized Persistency of Excitation , 2007, Int. J. Math. Math. Sci..

[48]  K. Helland,et al.  Recursive algorithm for partial least squares regression , 1992 .

[49]  Maxime Gautier,et al.  Extended Kalman Filtering and Weighted Least Squares Dynamic Identification of Robot , 2000 .

[50]  Maxime Gautier,et al.  DIDIM: A new method for the dynamic identification of robots from only torque data , 2008, 2008 IEEE International Conference on Robotics and Automation.

[51]  M. A. Jordan,et al.  Persistency of excitation and richness in continuous-time piecewise linear systems , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[52]  Sergey A. Kolyubin,et al.  Robot Kinematics Identification: KUKA LWR4+ Redundant Manipulator Example , 2015 .

[53]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .