Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems

We study performance limitation issues found in linear multivariable feedback systems. Our main contributions include Bode and Poisson type integral inequalities and performance limits for the sensitivity and complementary sensitivity functions. These results characterize and quantify explicitly how open-loop unstable poles and nonminimum phase zeros may impose inherent limitations on feedback design and fundamental limits on the best achievable performance. The role of time delay is also studied in this context. Most notably, we show that the performance and design limitations in multivariable systems intrinsically depend on the locations as well as directions of unstable poles and nonminimum phase zeros, and in particular, on how pole and zero directions are aligned. The latter is characterized by angles measuring the mutual orientation between zero and pole directions, and it is shown to play a crucial role in multivariable system design.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  Douglas P. Looze,et al.  A Sensitivity Tradeoff for Plants with Time Delay , 1985, 1985 American Control Conference.

[3]  Shinji Hara,et al.  Properties of complementary sensitivity function in SISO digital control systems , 1989 .

[4]  Graham C. Goodwin,et al.  Trade-offs in linear filter design , 1995, Autom..

[5]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[6]  J. Freudenberg,et al.  Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .

[7]  Ali Saberi,et al.  Explicit expressions for cascade factorization of general nonminimum phase systems , 1992 .

[8]  Brian D. O. Anderson,et al.  An interpolation theory approach to H∞ controller degree bounds , 1988 .

[9]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[10]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[11]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[12]  Stephen P. Boyd,et al.  Subharmonic functions and performance bounds on linear time-invariant feedback systems , 1984, IEEE Conference on Decision and Control.

[13]  Shinji Hara,et al.  Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems , 1988 .

[14]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[18]  Jie Chen,et al.  On logarithmic integrals and performance bounds for MIMO systems. I. Sensitivity integral inequalities , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  T. Broadbent Complex Variables , 1970, Nature.

[20]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[21]  Jie Chen Multivariable gain-phase and sensitivity integral relations and design trade-offs , 1998, IEEE Trans. Autom. Control..

[22]  J. Freudenberg,et al.  Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .

[23]  C. Mohtadi Bode's integral theorem for discrete-time systems , 1990 .

[24]  Paul Koosis,et al.  The Logarithmic Integral , 1986 .

[25]  S. Hara,et al.  Constraints on sensitivity characteristics in linear multivariable discrete-time control systems , 1989 .

[26]  Jim Freudenberg,et al.  Loop transfer recovery for nonminimum phase plants , 1990 .

[27]  Richard H. Middleton,et al.  Inherent design limitations for linear sampled-data feedback systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[28]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[29]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[30]  Jie Chen Sensitivity Integral Relations and Design Tradeoffs in Linear Multivariable Feedback Systems , 1993, 1993 American Control Conference.

[31]  Jie Chen On logarithmic complementary sensitivity integrals for MIMO systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[32]  Jie Chen,et al.  Intrinsic performance limits of linear feedback control , 1998, Robustness in Identification and Control.

[33]  Jie Chen Sensitivity integrals and transformation techniques: a new perspective , 1997, IEEE Trans. Autom. Control..

[34]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[35]  P. Khargonekar Control System Synthesis: A Factorization Approach (M. Vidyasagar) , 1987 .

[36]  Carl N. Nett,et al.  Sensitivity integrals for multivariable discrete-time systems , 1995, Autom..

[37]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[38]  F. B. The Theory of Linear Operators: , 1937, Nature.

[39]  H. Kwakernaak,et al.  The maximally achievable accuracy of linear optimal regulators and linear optimal filters , 1972 .

[40]  Stephen P. Boyd,et al.  Subharmonic functions and performance bounds on linear time-invariant feedback systems , 1984, The 23rd IEEE Conference on Decision and Control.

[41]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[42]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[43]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[44]  D. Looze,et al.  A sensitivity tradeoff for plants with time delay , 1987 .

[45]  David J. N. Limebeer,et al.  An analysis of the pole-zero cancellations in H ∞ -optimal control problems of the first kind , 1987 .

[46]  Li Qiu,et al.  Limitations on maximal tracking accuracy. I. Tracking step signals , 1996, Proceedings of 35th IEEE Conference on Decision and Control.