Sensorimotor processing in the rodent barrel cortex

Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined. The whisker sensorimotor system provides rodents with tactile information about their immediate facial environment. In this Review, Carl Petersen examines the complex neuronal circuits of the whisker-related primary somatosensory cortex and how they contribute to sensorimotor processing.

[1]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[2]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[3]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[4]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[5]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[6]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[7]  M. Andermann,et al.  Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats , 2008, Neuron.

[8]  C. Petersen,et al.  Optogenetic Stimulation of Cortex to Map Evoked Whisker Movements in Awake Head-Restrained Mice , 2018, Neuroscience.

[9]  M E Diamond,et al.  Distribution of tactile learning and its neural basis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Mitra Javadzadeh,et al.  Long-range population dynamics of anatomically defined neocortical networks , 2016, eLife.

[11]  C. Petersen,et al.  Parvalbumin-Expressing GABAergic Neurons in Mouse Barrel Cortex Contribute to Gating a Goal-Directed Sensorimotor Transformation , 2016, Cell reports.

[12]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[13]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[14]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[15]  D. Kleinfeld,et al.  Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus , 2015, PLoS biology.

[16]  T. Woolsey,et al.  Somatosensory Cortex: Structural Alterations following Early Injury to Sense Organs , 1973, Science.

[17]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[18]  Alison L. Barth,et al.  POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex , 2018, Cerebral cortex.

[19]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[20]  Ashesh K Dhawale,et al.  Motor Cortex Is Required for Learning but Not for Executing a Motor Skill , 2015, Neuron.

[21]  A. Zador,et al.  Selective corticostriatal plasticity during acquisition of an auditory discrimination task , 2014, Nature.

[22]  Dany Arsenault,et al.  Developmental remodelling of the lemniscal synapse in the ventral basal thalamus of the mouse , 2006, The Journal of physiology.

[23]  S. E. Kwon,et al.  A Non-canonical Feedback Circuit for Rapid Interactions between Somatosensory Cortices , 2018, Cell reports.

[24]  Jessica A. Cardin,et al.  Waking State: Rapid Variations Modulate Neural and Behavioral Responses , 2015, Neuron.

[25]  M. Deschenes,et al.  The Relay of High-Frequency Sensory Signals in the Whisker-to-Barreloid Pathway , 2003, The Journal of Neuroscience.

[26]  Chris C. Rodgers,et al.  Sensation Movement and Learning in the Absence of Barrel Cortex , 2018, Nature.

[27]  C. Petersen,et al.  Cholinergic signals in mouse barrel cortex during active whisker sensing. , 2014, Cell reports.

[28]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[29]  Vijay Sadashivaiah,et al.  Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task , 2016, Neurophotonics.

[30]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[31]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[32]  Wulfram Gerstner,et al.  Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor Learning Rules , 2018, Front. Neural Circuits.

[33]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[34]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  E. Welker,et al.  Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice , 2012, The European journal of neuroscience.

[36]  Ian R. Wickersham,et al.  Hierarchical Connectivity and Connection-Specific Dynamics in the Corticospinal–Corticostriatal Microcircuit in Mouse Motor Cortex , 2012, The Journal of Neuroscience.

[37]  Ying Li,et al.  Serotonin Regulates Rhythmic Whisking , 2003, Neuron.

[38]  Hongdian Yang,et al.  Origins of choice-related activity in mouse somatosensory cortex , 2015, Nature Neuroscience.

[39]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[40]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[41]  Marcel Oberlaender,et al.  Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons , 2017, Nature Communications.

[42]  Varun Sreenivasan,et al.  Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice , 2014, The European journal of neuroscience.

[43]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[44]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[45]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[46]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[47]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[48]  Charles Rattray,et al.  Themes and variations , 2007, Architectural Research Quarterly.

[49]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[50]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[51]  C. Petersen,et al.  Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior , 2018, Neuron.

[52]  Sho Yagishita,et al.  A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2014, Science.

[53]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[54]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[55]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[56]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[57]  K. Svoboda,et al.  A Cellular Resolution Map of Barrel Cortex Activity during Tactile Behavior , 2015, Neuron.

[58]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[59]  Alison L. Barth,et al.  Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits , 2018, Neuron.

[60]  R. Kötter,et al.  Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits , 2007, Brain Structure and Function.

[61]  Carl C. H. Petersen,et al.  Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex , 2018, Front. Neuroanat..

[62]  K. Johnson An Update. , 1984, Journal of food protection.

[63]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[64]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[65]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[66]  S. Hestrin,et al.  Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses , 2013, Neuron.

[67]  Shaul Hestrin,et al.  Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a , 2014, The Journal of Neuroscience.

[68]  Michael Brecht,et al.  Barrel Cortex Membrane Potential Dynamics in Social Touch , 2015, Neuron.

[69]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[70]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[71]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[72]  Eka Swadiansa The hypothesis , 1990 .

[73]  T. Prescott,et al.  Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. , 2009, Journal of neurophysiology.

[74]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[75]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[76]  Jean-Christophe Comte,et al.  Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice. , 2015, Cell reports.

[77]  Mathew H. Evans,et al.  Prediction of primary somatosensory neuron activity during active tactile exploration , 2015, bioRxiv.

[78]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[79]  D. Kleinfeld,et al.  Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System , 2011, Neuron.

[80]  M. Nicolelis,et al.  Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations , 2001, The Journal of Neuroscience.

[81]  M. Brecht,et al.  Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing , 2005, The Journal of Neuroscience.

[82]  Sami El Boustani,et al.  Correlated input reveals coexisting coding schemes in a sensory cortex , 2012, Nature Neuroscience.

[83]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[84]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[85]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[86]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[87]  Edward M. Callaway,et al.  Genetic Dissection of Neural Circuits: A Decade of Progress. , 2018, Neuron.

[88]  W. Schultz,et al.  Retroactive modulation of spike timing-dependent plasticity by dopamine , 2015, eLife.

[89]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[90]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[91]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[92]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[93]  Daniel E. Feldman,et al.  Slip-Based Coding of Local Shape and Texture in Mouse S1 , 2018, Neuron.

[94]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[95]  M. Laubach,et al.  Layer-Specific Somatosensory Cortical Activation During Active Tactile Discrimination , 2004, Science.

[96]  Mark T. Harnett,et al.  Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior , 2018, Nature Neuroscience.

[97]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[98]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[99]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[100]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.

[101]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[102]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[103]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[104]  Fan Wang,et al.  Parallel Inhibitory and Excitatory Trigemino-Facial Feedback Circuitry for Reflexive Vibrissa Movement , 2017, Neuron.

[105]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[106]  Zengcai V. Guo,et al.  Maintenance of persistent activity in a frontal thalamocortical loop , 2017, Nature.

[107]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[108]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[109]  Colin Blakemore,et al.  PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex , 2001, Nature Neuroscience.

[110]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.

[111]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[112]  C. Petersen,et al.  Movement Initiation Signals in Mouse Whisker Motor Cortex , 2016, Neuron.

[113]  Jens Kremkow,et al.  Translaminar Cortical Membrane Potential Synchrony in Behaving Mice , 2016, Cell reports.

[114]  Claire E. J. Cheetham,et al.  Pansynaptic Enlargement at Adult Cortical Connections Strengthened by Experience , 2012, Cerebral cortex.

[115]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[116]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[117]  C. Petersen,et al.  State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice , 2018, eLife.

[118]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[119]  Susumu Tonegawa,et al.  Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex , 2000, Nature.

[120]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[121]  M. Brecht,et al.  The Representation of Social Facial Touch in Rat Barrel Cortex , 2014, Current Biology.

[122]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[123]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[124]  A. Zador,et al.  Corticostriatal neurones in auditory cortex drive decisions during auditory discrimination , 2013, Nature.

[125]  Mathew E. Diamond,et al.  Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms , 2018, Neuron.

[126]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[127]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[128]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[129]  Kyle S Severson,et al.  Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents , 2017, Neuron.

[130]  Peter L Strick,et al.  Posterior parietal cortex contains a command apparatus for hand movements , 2017, Proceedings of the National Academy of Sciences.

[131]  Fan Wang,et al.  Inhibition, Not Excitation, Drives Rhythmic Whisking , 2016, Neuron.

[132]  David Kleinfeld,et al.  Hierarchy of orofacial rhythms revealed through whisking and breathing , 2013, Nature.

[133]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits: A Decade of Progress , 2018, Neuron.

[134]  H. Gong,et al.  Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field , 2017, Scientific Reports.

[135]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[136]  S. E. Kwon,et al.  Sensory and decision-related activity propagate in a cortical feedback loop during touch perception , 2016, Nature Neuroscience.

[137]  George J Augustine,et al.  The cerebellum linearly encodes whisker position during voluntary movement , 2016, eLife.

[138]  C. Petersen,et al.  Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior , 2015, Neuron.

[139]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[140]  Martin Vinck,et al.  Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding , 2014, Neuron.

[141]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[142]  M. Diamond,et al.  Complementary Contributions of Spike Timing and Spike Rate to Perceptual Decisions in Rat S1 and S2 Cortex , 2015, Current Biology.

[143]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[144]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[145]  Takayuki Yamashita,et al.  Target-specific membrane potential dynamics of neocortical projection neurons during goal-directed behavior , 2016, eLife.

[146]  L. Leslie,et al.  A decade of progress. , 1969, Minnesota medicine.

[147]  F. Helmchen,et al.  Pathway-specific reorganization of projection neurons in somatosensory cortex during learning , 2015, Nature Neuroscience.

[148]  Houman Safaai,et al.  Coordinated Population Activity Underlying Texture Discrimination in Rat Barrel Cortex , 2013, The Journal of Neuroscience.

[149]  Edith Hamel,et al.  5-HT3 Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons , 2002, The Journal of Neuroscience.

[150]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[151]  M. Shuler,et al.  Integration of bilateral whisker stimuli in rats: role of the whisker barrel cortices. , 2002, Cerebral cortex.

[152]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[153]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[154]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[155]  Xiang Zhou,et al.  New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking , 2013, Neuron.

[156]  R. Mooney,et al.  A synaptic and circuit basis for corollary discharge in the auditory cortex , 2014, Nature.

[157]  M. Brecht,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[158]  E. Welker,et al.  Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[160]  B. Hangya,et al.  Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback , 2015, Cell.

[161]  Karel Svoboda,et al.  Neural coding in barrel cortex during whisker-guided locomotion , 2015, eLife.

[162]  Cornelius Schwarz,et al.  Central signals rapidly switch tactile processing in rat barrel cortex during whisker movements. , 2006, Cerebral cortex.

[163]  Takahiro Furuta,et al.  Anisotropic Distribution of Thalamocortical Boutons in Barrels , 2011, The Journal of Neuroscience.

[164]  R. S. Waters,et al.  Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat , 2000, Experimental Brain Research.

[165]  Johannes M. Mayrhofer,et al.  Tactile frequency discrimination is enhanced by circumventing neocortical adaptation , 2014, Nature Neuroscience.

[166]  E. Welker,et al.  Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse , 2004, Experimental Brain Research.

[167]  Per Magne Knutsen,et al.  Haptic Object Localization in the Vibrissal System: Behavior and Performance , 2006, The Journal of Neuroscience.

[168]  P. Jonas,et al.  Kinetics of Mg2+ unblock of NMDA receptors: implications for spike‐timing dependent synaptic plasticity , 2004, The Journal of physiology.

[169]  Karel Svoboda,et al.  Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality , 2014, The Journal of Neuroscience.

[170]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[171]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[172]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[173]  S. Grillner Action: The Role of Motor Cortex Challenged , 2015, Current Biology.

[174]  T. Crow Cortical Synapses and Reinforcement: a Hypothesis , 1968, Nature.

[175]  E. Welker,et al.  Altered Sensory Processing in the Somatosensory Cortex of the Mouse Mutant Barrelless , 1996, Science.

[176]  Athanasios Alexopoulos,et al.  Mechanisms. , 2021, Deutsches Arzteblatt international.

[177]  Hillel Adesnik,et al.  Cracking the Function of Layers in the Sensory Cortex , 2018, Neuron.

[178]  J. Borst,et al.  Single-Cell Stimulation in Barrel Cortex Influences Psychophysical Detection Performance , 2018, The Journal of Neuroscience.

[179]  A. Keller,et al.  Functional circuitry involved in the regulation of whisker movements , 2002, The Journal of comparative neurology.

[180]  W. Gerstner,et al.  Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. , 2012, Journal of neurophysiology.

[181]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[182]  Yves Kremer,et al.  Membrane Potential Dynamics of Neocortical Projection Neurons Driving Target-Specific Signals , 2013, Neuron.

[183]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[184]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[185]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[186]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[187]  Maik C. Stüttgen,et al.  Psychophysical and neurometric detection performance under stimulus uncertainty , 2008, Nature Neuroscience.

[188]  E. Ahissar,et al.  On-going computation of whisking phase by mechanoreceptors , 2016, Nature Neuroscience.

[189]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[190]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[191]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[192]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[193]  T. Freund,et al.  gamma-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[194]  Jianing Yu,et al.  Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation , 2016, Nature Neuroscience.

[195]  Erik Seedhouse,et al.  Behavior and performance , 2011 .

[196]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[197]  D. Feldmeyer,et al.  Inhibitory Interneurons and their Circuit Motifs in the Many Layers of the Barrel Cortex , 2018, Neuroscience.

[198]  Leena E Williams,et al.  Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition , 2018, Neuron.

[199]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.