How MT cells analyze the motion of visual patterns

Neurons in area MT (V5) are selective for the direction of visual motion. In addition, many are selective for the motion of complex patterns independent of the orientation of their components, a behavior not seen in earlier visual areas. We show that the responses of MT cells can be captured by a linear-nonlinear model that operates not on the visual stimulus, but on the afferent responses of a population of nonlinear V1 cells. We fit this cascade model to responses of individual MT neurons and show that it robustly predicts the separately measured responses to gratings and plaids. The model captures the full range of pattern motion selectivity found in MT. Cells that signal pattern motion are distinguished by having convergent excitatory input from V1 cells with a wide range of preferred directions, strong motion opponent suppression and a tuned normalization that may reflect suppressive input from the surround of V1 cells.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[3]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[4]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[5]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[6]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[7]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[9]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[11]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[12]  J. P. Jones,et al.  The two-dimensional spectral structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[13]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[15]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[16]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[17]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[18]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[19]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[20]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[21]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[22]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[23]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[24]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[25]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[26]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[27]  K. H. Britten,et al.  Spatial Summation in the Receptive Fields of MT Neurons , 1999, The Journal of Neuroscience.

[28]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[29]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[30]  Valerio Mante,et al.  Testing models of cortical area MT , 2000 .

[31]  Margaret S Livingstone,et al.  Two-Dimensional Substructure of MT Receptive Fields , 2001, Neuron.

[32]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[33]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[34]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[35]  Chris J. Tinsley,et al.  The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey. , 2003, Journal of neurophysiology.

[36]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[37]  J. Kaas,et al.  Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys , 2003, The Journal of Neuroscience.

[38]  Margaret S Livingstone,et al.  End-Stopping and the Aperture Problem Two-Dimensional Motion Signals in Macaque V1 , 2003, Neuron.

[39]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[40]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[41]  H. Rodman,et al.  Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT) , 2004, Experimental Brain Research.

[42]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[43]  J. Movshon,et al.  Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex , 2004, The Journal of Neuroscience.

[44]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[45]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[46]  A. Noest,et al.  Motion transparency and coherence in plaids: the role of end-stopped cells , 2004, Experimental Brain Research.

[47]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[48]  J. Movshon,et al.  Dynamics of motion signaling by neurons in macaque area MT , 2005, Nature Neuroscience.

[49]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[51]  R. K. Simpson Nature Neuroscience , 2022 .