Real Time Feedback Control for Nonholonomic Mobile Robots With Obstacles

We introduce a method for constructing smooth feedback laws for a nonholonomic robot in a 2-dimensional polygonal workspace. First, we compute a smooth feedback law in the workspace without taking the nonholonomic constraints into account. We then give a general technique for using this to construct a new smooth feedback law over the entire 3-dimensional configuration space (consisting of position and orientation). The trajectories of the resulting feedback law will be smooth and will stabilize the position of the robot in the plane, neglecting the orientation. Our method is suitable for real time implementation and can be applied to dynamic environments

[1]  Howie Choset,et al.  Composition of local potential functions for global robot control and navigation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  D. Manocha,et al.  Fast Polygon Triangulation Based on Seidel's Algorithm , 1995 .

[3]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[4]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[5]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[6]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[7]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[8]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[9]  Steven M. LaValle,et al.  Algorithms for Computing Numerical Optimal Feedback Motion Strategies , 2001, Int. J. Robotics Res..

[10]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[11]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[12]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[14]  H. Zhang,et al.  Simple Mechanical Control Systems with Constraints and Symmetry , 2002, SIAM J. Control. Optim..

[15]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[16]  Anthony M. Bloch,et al.  Optimal control of underactuated nonholonomic mechanical systems , 2006, 2006 American Control Conference.

[17]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[19]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[20]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  Richard M. Murray,et al.  Vehicle motion planning using stream functions , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  S. LaValle,et al.  Smoothly Blending Vector Fields for Global Robot Navigation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Alfred A. Rizzi Hybrid control as a method for robot motion programming , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  Steven M. LaValle,et al.  The sampling-based neighborhood graph: an approach to computing and executing feedback motion strategies , 2004, IEEE Transactions on Robotics and Automation.