Fast B4B: Fast BFT for Blockchains

Low latency is one of the desired properties for partially synchronous Byzantine consensus protocols. Previous protocols have achieved consensus with just two communication steps either by reducing the upper bound on the number of faults the protocol can tolerate ( f = n−1 5 ) or use of trusted hardware like Trusted Execution Environment or TEEs. In this paper, we propose a protocol called Fast B4B, in which the protocol achieves consensus in just two communication steps. Fast B4B can tolerate maximum number of faults a partial BFT consensus can tolerate ( f = n−1 3 ). Furthermore, Fast B4B does not require the use of any trusted hardware. The trade-off for this achievement is that at most f times some nodes may revert their blocks. We show that this reversion of a block will not compromise the safety of the protocol at all, yet it may incur a small amount of additional latency during view change.

[1]  Klaus Kursawe,et al.  Optimistic Byzantine agreement , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[2]  Michael Dahlin,et al.  Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults , 2009, NSDI.

[3]  Serguei Popov,et al.  On a decentralized trustless pseudo-random number generation algorithm , 2017, J. Math. Cryptol..

[4]  Hao Wang,et al.  Monoxide: Scale out Blockchains with Asynchronous Consensus Zones , 2019, NSDI.

[5]  Nancy A. Lynch,et al.  Consensus in the presence of partial synchrony , 1988, JACM.

[6]  Pedro Fonseca,et al.  SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems , 2020, 2020 IEEE Symposium on Security and Privacy (SP).

[7]  Moni Naor,et al.  An Optimally Fair Coin Toss , 2015, Journal of Cryptology.

[8]  Hovav Shacham,et al.  Aggregate and Verifiably Encrypted Signatures from Bilinear Maps , 2003, EUROCRYPT.

[9]  Dominic Williams,et al.  DFINITY Technology Overview Series, Consensus System , 2018, ArXiv.

[10]  Costas Busch,et al.  Window Based BFT Blockchain Consensus , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[11]  Dan Boneh,et al.  Compact Multi-Signatures for Smaller Blockchains , 2018, IACR Cryptol. ePrint Arch..

[12]  Ittai Abraham,et al.  HotStuff: BFT Consensus with Linearity and Responsiveness , 2019, PODC.

[13]  Leslie Lamport,et al.  Generalized Consensus and Paxos , 2005 .

[14]  Jean-Philippe Martin,et al.  Fast Byzantine Consensus , 2006, IEEE Transactions on Dependable and Secure Computing.

[15]  John Lane,et al.  Byzantine replication under attack , 2008, 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN).

[16]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[17]  Roger Wattenhofer,et al.  FnF-BFT: Exploring Performance Limits of BFT Protocols , 2020, ArXiv.

[18]  Ittai Abraham,et al.  No-Commit Proofs: Defeating Livelock in BFT , 2021, IACR Cryptol. ePrint Arch..

[19]  Vitalik Buterin,et al.  Casper the Friendly Finality Gadget , 2017, ArXiv.

[20]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[21]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1983, PODS '83.

[22]  Nathan Linial,et al.  Collective coin flipping, robust voting schemes and minima of Banzhaf values , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[23]  Petr Kuznetsov,et al.  Zeno: Eventually Consistent Byzantine-Fault Tolerance , 2009, NSDI.

[24]  Silvio Micali,et al.  Algorand: Scaling Byzantine Agreements for Cryptocurrencies , 2017, IACR Cryptol. ePrint Arch..

[25]  Sangmin Lee,et al.  Upright cluster services , 2009, SOSP '09.

[26]  Rodrigo Rodrigues,et al.  Generalized Paxos Made Byzantine (and Less Complex) , 2017, SSS.

[27]  Petr Kuznetsov,et al.  Revisiting Optimal Resilience of Fast Byzantine Consensus , 2021, PODC.

[28]  David G. Andersen,et al.  There is more consensus in Egalitarian parliaments , 2013, SOSP.

[29]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[30]  Leslie Lamport,et al.  The part-time parliament , 1998, TOCS.

[31]  Mohan Kumar,et al.  Revisiting hBFT: Speculative Byzantine Fault Tolerance with Minimum Cost , 2019, ArXiv.

[32]  Victor Shoup,et al.  Random Oracles in Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptography , 2000, Journal of Cryptology.

[33]  Nuno Neves,et al.  On the Challenges of Building a BFT SCADA , 2018, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[34]  Ramakrishna Kotla,et al.  Zyzzyva , 2007, SOSP.

[35]  Miguel Oom Temudo de Castro,et al.  Practical Byzantine fault tolerance , 1999, OSDI '99.

[36]  Tobias Distler,et al.  Byzantine Fault-tolerant State-machine Replication from a Systems Perspective , 2021, ACM Comput. Surv..

[37]  Miguel Correia,et al.  The Crutial Way of Critical Infrastructure Protection , 2008, IEEE Security & Privacy Magazine.

[38]  Alexey Gotsman,et al.  State-machine replication for planet-scale systems , 2020, EuroSys.

[39]  Rodrigo Rodrigues,et al.  Efficient middleware for byzantine fault tolerant database replication , 2011, EuroSys '11.

[40]  Alysson Neves Bessani,et al.  State Machine Replication for the Masses with BFT-SMART , 2014, 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[41]  Costas Busch,et al.  Proteus: A Scalable BFT Consensus Protocol for Blockchains , 2019, 2019 IEEE International Conference on Blockchain (Blockchain).

[42]  Costas Busch,et al.  The Hermes BFT for Blockchains , 2020, IEEE Transactions on Dependable and Secure Computing.

[43]  John K. Ousterhout,et al.  EPaxos Revisited , 2021, NSDI.

[44]  Benny Pinkas,et al.  SBFT: a Scalable Decentralized Trust Infrastructure for Blockchains , 2018, ArXiv.

[45]  Manuel Blum,et al.  Coin flipping by telephone a protocol for solving impossible problems , 1983, SIGA.

[46]  Chen Feng,et al.  Fast-HotStuff: A Fast and Resilient HotStuff Protocol , 2020, ArXiv.

[47]  Kartik Nayak,et al.  Good-case Latency of Byzantine Broadcast: a Complete Categorization , 2021, PODC.

[48]  Miguel Correia,et al.  Efficient Byzantine Fault-Tolerance , 2013, IEEE Transactions on Computers.