Motion Planning Explorer: Visualizing Local Minima Using a Local-Minima Tree

Motion planning problems often have many local minima. Those minima are important to visualize to let a user guide, prevent or predict motions. Towards this goal, we develop the motion planning explorer, an algorithm to let users interactively explore a tree of local-minima. Following ideas from Morse theory, we define local minima as paths invariant under minimization of a cost functional. The local-minima are grouped into a local-minima tree using lower-dimensional projections specified by a user. The user can then interactively explore the local-minima tree, thereby visualizing the problem structure and guide or prevent motions. We show the motion planning explorer to faithfully capture local minima in four realistic scenarios, both for holonomic and certain non-holonomic robots.

[1]  Didier Wolf,et al.  Capture of homotopy classes with probabilistic road map , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[3]  George Konidaris,et al.  Robot Motion Planning on a Chip , 2016, Robotics: Science and Systems.

[4]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[5]  Subhrajit Bhattacharya,et al.  Path Homotopy Invariants and their Application to Optimal Trajectory Planning , 2015 .

[6]  Kostas E. Bekris,et al.  Asymptotically optimal sampling-based kinodynamic planning , 2014, Int. J. Robotics Res..

[7]  Mark H. Overmars,et al.  Useful cycles in probabilistic roadmap graphs , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[9]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[10]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[11]  Michael Farber,et al.  Topology of random linkages , 2008 .

[12]  Marco Pavone,et al.  Fast marching tree: A fast marching sampling-based method for optimal motion planning in many dimensions , 2013, ISRR.

[13]  John M. Lee Introduction to Topological Manifolds , 2000 .

[14]  Hlawka The calculus of variations in the large , 1939 .

[15]  Florian T. Pokorny,et al.  Topological trajectory classification with filtrations of simplicial complexes and persistent homology , 2016, Int. J. Robotics Res..

[16]  Jérôme Barraquand,et al.  A method of progressive constraints for manipulation planning , 1997, IEEE Trans. Robotics Autom..

[17]  Stephen Smale,et al.  On the topology of algorithms, I , 1987, J. Complex..

[18]  Florian T. Pokorny,et al.  Multi-scale Activity Estimation with Spatial Abstractions , 2017, GSI.

[19]  Kostas E. Bekris,et al.  Sparse roadmap spanners for asymptotically near-optimal motion planning , 2014, Int. J. Robotics Res..

[20]  Florent Lamiraux,et al.  Reactive path deformation for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics.

[21]  Olivier Stasse,et al.  Motion Planning in Irreducible Path Spaces , 2018, Robotics Auton. Syst..

[22]  Eiichi Yoshida,et al.  Quotient-Space Motion Planning , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Vijay Kumar,et al.  Topological constraints in search-based robot path planning , 2012, Auton. Robots.

[24]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[25]  Thierry Siméon,et al.  Path Deformation Roadmaps: Compact Graphs with Useful Cycles for Motion Planning , 2008, Int. J. Robotics Res..

[26]  Maxim Likhachev,et al.  Effective Footstep Planning for Humanoids Using Homotopy-Class Guidance , 2017, ICAPS.

[27]  Nancy M. Amato,et al.  Iterative relaxation of constraints: a framework for improving automated motion planning , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Manuel Lopes,et al.  Multi-bound tree search for logic-geometric programming in cooperative manipulation domains , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Marc Toussaint,et al.  Rapidly-Exploring Quotient-Space Trees: Motion Planning using Sequential Simplifications , 2019, ISRR.

[30]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[31]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[32]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[33]  Kris Hauser,et al.  Robust Contact Generation for Robot Simulation with Unstructured Meshes , 2013, ISRR.

[34]  Danica Kragic,et al.  High-dimensional Winding-Augmented Motion Planning with 2D topological task projections and persistent homology , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).