Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms

By a mobile manipulator we mean a robotic system composed of a non-holonomic mobile platform and a holonomic manipulator fixed to the platform. A taskspace of the mobile manipulator includes positions and orientations of its end effector relative to an inertial coordinate frame. The kinematics of a mobile manipulator are represented by a driftless control system with outputs. Admissible control functions of the platform along with joint positions of the manipulator constitute the endogenous configuration space. Endogenous configurations have a meaning of controls. A map from the endogenous configuration space into the taskspace is referred to as the instantaneous kinematics of the mobile manipulator. Within this framework, the inverse kinematic problem for a mobile manipulator amounts to defining an endogenous configuration that drives the end effector to a desirable position and orientation in the taskspace. Exploiting the analogy between stationary and mobile manipulators we present in the paper a collection of regular and singular Jacobian inverse kinematics algorithms. Their performance is evaluated on the basis of intense computer simulations.

[1]  Krzysztof Tchoń,et al.  On Kinematic Singularities of Nonholonomic Robotic Systems , 2000 .

[2]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[3]  Woojin Chung,et al.  Design and control of the nonholonomic manipulator , 2001, IEEE Trans. Robotics Autom..

[4]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[5]  O. Brock,et al.  Robots in Human Environments: Basic Autonomous Capabilities , 1999, Int. J. Robotics Res..

[6]  J. Jakubiak,et al.  Motion planning in endogenous configuration space , 2002, Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02..

[7]  Homayoun Seraji,et al.  A Unified Approach to Motion Control of Mobile Manipulators , 1998, Int. J. Robotics Res..

[8]  J. Jakubiak,et al.  Regular Jacobian motion planning algorithms for mobile manipulators , 2002 .

[9]  Jianxin Xu,et al.  Linear and Nonlinear Iterative Learning Control , 2003 .

[10]  Lee Tong Heng,et al.  Applied Predictive Control , 2001 .

[11]  Eduardo D. Sontag A general approach to path planning for systems without drift , 1998 .

[12]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[13]  Robert Muszynski,et al.  Instantaneous kinematics and dexterity of mobile manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[15]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[16]  Frédéric Jean,et al.  Sub-Riemannian Geometry , 2022 .

[17]  Robert Muszynski,et al.  Singular inverse kinematic problem for robotic manipulators: a normal form approach , 1998, IEEE Trans. Robotics Autom..

[18]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[19]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[20]  C. Samson,et al.  Feedback control of nonholonomic wheeled vehicles. A survey , 2002 .

[21]  John T. Wen,et al.  Kinematic path planning for robots with holonomic and nonholonomic constraints , 1998 .

[22]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[23]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  Janusz Jakubiak,et al.  Extended Jacobian inverse kinematics algorithms for mobile manipulators , 2002, J. Field Robotics.

[25]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[26]  Oliver Brock,et al.  Task-consistent obstacle avoidance and motion behavior for mobile manipulation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[27]  Vijay Kumar,et al.  Nonholonomic motion planning for multiple mobile manipulators , 1997, Proceedings of International Conference on Robotics and Automation.

[28]  Shinji Yamamoto,et al.  A new approach to kinematic control of simple manipulators , 1992, IEEE Trans. Syst. Man Cybern..

[29]  Jon Rigelsford,et al.  Modelling and Control of Robot Manipulators , 2000 .

[30]  Krzysztof Tchon,et al.  Repeatability of inverse kinematics algorithms for mobile manipulators , 2002, IEEE Trans. Autom. Control..

[31]  Robert Muszyński,et al.  A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track , 1998 .

[32]  Katarzyna Zadarnowska,et al.  Kinematic dexterity of mobile manipulators: an endogenous configuration space approach , 2003, Robotica.

[33]  J. Sasiadek,et al.  Energy-efficient Newton-based nonholonomic motion planning , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[34]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[35]  Krzysztof Tchoń,et al.  Kinematics of mobile manipulators : a control theoretic perspective , 2001 .

[36]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[37]  Richard W. Longman,et al.  Iterative Learning Control for Over-Determined, Under-Determined, and Ill-Conditioned Systems , 2003 .

[38]  Ignacy Duleba,et al.  On inverting singular kinematics and geodesic trajectory generation for robot manipulators , 1993, J. Intell. Robotic Syst..

[39]  W. Rugh Linear System Theory , 1992 .

[40]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[41]  Oussama Khatib,et al.  Coordination and decentralized cooperation of multiple mobile manipulators , 1996, J. Field Robotics.

[42]  Xiaoping Yun,et al.  Coordinating locomotion and manipulation of a mobile manipulator , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[43]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .