Forward Kinematic Modeling of Conical-Shaped Continuum Manipulators

SUMMARY Forward kinematics is essential in robot control. Its resolution remains a challenge for continuum manipulators because of their inherent flexibility. Learning-based approaches allow obtaining accurate models. However, they suffer from the explosion of the learning database that wears down the manipulator during data collection. This paper proposes an approach that combines the model and learning-based approaches. The learning database is derived from analytical equations to prevent the robot from operating for long periods. The database obtained is handled using Deep Neural Networks (DNNs). The Compact Bionic Handling robot serves as an experimental platform. The comparison with existing approaches gives satisfaction.

[1]  Pierre E. Dupont,et al.  Torsional kinematic model for concentric tube robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[2]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[3]  Ruxu Du,et al.  Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot , 2013 .

[4]  John H. Holland,et al.  Distributed genetic algorithms for function optimization , 1989 .

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  Russell H. Taylor,et al.  A dexterous system for laryngeal surgery , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[8]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[9]  Qingshan Liu,et al.  Learning Multiscale Deep Features for High-Resolution Satellite Image Scene Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Pushparaj Mani Pathak,et al.  Geometric modelling of multisection bionic manipulator: Experimental validation on RobotinoXT , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[11]  Ian D. Walker,et al.  Continuous Backbone “Continuum” Robot Manipulators , 2013 .

[12]  Shuzhi Sam Ge,et al.  Neural Network Control of a Rehabilitation Robot by State and Output Feedback , 2015, J. Intell. Robotic Syst..

[13]  John Kenneth Salisbury,et al.  Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive , 2009, IEEE Transactions on Robotics.

[14]  R. Rao,et al.  Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms , 2010 .

[15]  Le Zhang,et al.  Ensemble deep learning for regression and time series forecasting , 2014, 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL).

[16]  Jochen J. Steil,et al.  Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control † , 2017, Sensors.

[17]  Adam Morecki,et al.  Elephant trunk type elastic manipulator - a tool for bulk and liquid materials transportation , 1999, Robotica.

[18]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[19]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[20]  Darwin G. Caldwell,et al.  Shape function-based kinematics and dynamics for variable length continuum robotic arms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Jochen J. Steil,et al.  Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Rochdi Merzouki,et al.  Qualitative approach for inverse kinematic modeling of a Compact Bionic Handling Assistant trunk , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[23]  Pushparaj Mani Pathak,et al.  Kinematic Calibration of a Multisection Bionic Manipulator , 2015, IEEE/ASME Transactions on Mechatronics.

[24]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[25]  Darwin G. Caldwell,et al.  Novel modal approach for kinematics of multisection continuum arms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Rochdi Merzouki,et al.  Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator , 2016, IEEE/ASME Transactions on Mechatronics.

[27]  Zheng Hu,et al.  Improving Convolutional Neural Network Using Pseudo Derivative ReLU , 2018, 2018 5th International Conference on Systems and Informatics (ICSAI).

[28]  D. Giaouris,et al.  Comparison of particle swarm and simulated annealing algorithms for induction motor fault identification , 2009, 2009 7th IEEE International Conference on Industrial Informatics.

[29]  Kenji Fukumizu,et al.  Local minima and plateaus in hierarchical structures of multilayer perceptrons , 2000, Neural Networks.

[30]  Lutz Prechelt,et al.  PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms , 1994 .

[31]  Lei Guo,et al.  When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Darwin G. Caldwell,et al.  Kinematic model and inverse control for continuum manipulators , 2013, 2013 10th IEEE International Conference on Control and Automation (ICCA).

[33]  M Giorelli,et al.  A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm , 2012, Bioinspiration & biomimetics.

[34]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[35]  I. D. Walker,et al.  A novel approach to robotic climbing using continuum appendages in in-situ exploration , 2012, 2012 IEEE Aerospace Conference.

[36]  Qi Wang,et al.  Deep Metric Learning for Crowdedness Regression , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[37]  Xiangyang Zhu,et al.  Development of a dexterous continuum manipulator for exploration and inspection in confined spaces , 2016, Ind. Robot.

[38]  Oliver Sawodny,et al.  A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant , 2014, IEEE Transactions on Robotics.

[39]  Yoshua Bengio,et al.  An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.

[40]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[41]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[42]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[43]  Yoshua Bengio,et al.  Exploring Strategies for Training Deep Neural Networks , 2009, J. Mach. Learn. Res..

[44]  Lutz Prechelt,et al.  A Set of Neural Network Benchmark Problems and Benchmarking Rules , 1994 .

[45]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[46]  Christopher D. Rahn,et al.  Design of an artificial muscle continuum robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[47]  Robin R. Murphy,et al.  Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[48]  Cecilia Laschi,et al.  A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Claudio Moraga,et al.  The Influence of the Sigmoid Function Parameters on the Speed of Backpropagation Learning , 1995, IWANN.

[50]  Ian D. Walker,et al.  ROBOTIC MANIPULATORS INSPIRED BY CEPHALOPOD LIMBS , 2011 .

[51]  Ruslan Salakhutdinov,et al.  Learning Deep Generative Models , 2009 .

[52]  El-Sayed M. El-Horbaty,et al.  Classification using deep learning neural networks for brain tumors , 2017, Future Computing and Informatics Journal.

[53]  Jessica Burgner-Kahrs,et al.  Learning the Forward and Inverse Kinematics of a 6-DOF Concentric Tube Continuum Robot in SE(3) , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).